Lin Guoming, Su Yunqi, Duan Xiuyun, Xie Kui
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9311-9315. doi: 10.1002/anie.202100244. Epub 2021 Mar 10.
The non-oxidative dehydrogenation of propane to propylene plays an important role in the light-olefin chemical industry. However, the conversion and selectivity remain a fundamental challenge at low temperatures. Here we create and engineer high-density Lewis acid sites at well-defined surfaces in porous single-crystalline Mo N and MoN monoliths to enhance the non-oxidative dehydrogenation of propane to propylene. The top-layer Mo ions with unsaturated Mo-N and Mo-N coordination structures provide high-density Lewis acid sites at the surface, leading to the effective activation of C-H bonds without the overcracking of C-C bonds during the non-oxidative dehydrogenation of propane. We demonstrate a propane conversion of ≈11 % and a propylene selectivity of ≈95 % with porous single-crystalline Mo N and MoN monoliths at 500 °C.
丙烷非氧化脱氢制丙烯在轻烯烃化学工业中起着重要作用。然而,在低温下,转化率和选择性仍然是一个基本挑战。在此,我们在多孔单晶MoN和MoN整体材料的明确表面上创建并设计了高密度的路易斯酸位点,以增强丙烷非氧化脱氢制丙烯的反应。具有不饱和Mo-N和Mo-N配位结构的顶层Mo离子在表面提供了高密度的路易斯酸位点,使得在丙烷非氧化脱氢过程中能够有效活化C-H键,而不会导致C-C键过度裂解。我们证明,在500°C下,多孔单晶MoN和MoN整体材料的丙烷转化率约为11%,丙烯选择性约为95%。