Suppr超能文献

用于增强催化活性和稳定性的多孔单晶整体材料

Porous Single-Crystalline Monolith to Enhance Catalytic Activity and Stability.

作者信息

Yu Xiaoyan, Cheng Fangyuan, Duan Xiuyun, Xie Kui

机构信息

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Research (Wash D C). 2022 Jul 5;2022:9861518. doi: 10.34133/2022/9861518. eCollection 2022.

Abstract

Engineering the catalytic activity and stability of materials would require the identification of the structural features that can tailor active sites at surfaces. Porous single crystals combine the ordered lattice structures and disordered interconnected pores, and they would therefore provide the advantages of precise structure features to identify and engineer the active sites at surfaces. Herein, we fabricate porous single-crystalline vanadium nitride (VN) at centimeter scale and further dope Fe (FeVN) and Co (CoVN) in lattice to engineer the active sites at surface. We demonstrate that the active surface is composed of unsaturated coordination of V-N, Fe-N, and Co-N structures which lead to the generation of high-density active sites at the porous single-crystalline monolith surface. The interconnected pores aid the pore-enhanced fluxion to facilitate species diffusion in the porous architectures. In the nonoxidative dehydrogenation of ethane to ethylene, we demonstrate the outstanding performance with ethane conversion of 36% and ethylene selectivity of 99% at 660°C. Remarkably stability as a result of their single-crystalline structure, the monoliths achieve the outstanding performance without degradation being observed even after 200 hours of a continuous operation in a monolithic reactor. This work not only demonstrates the effective structural engineering to simultaneously enhance the stability and overall performance for practically useful catalytic materials but also provide a new route for the element doping of porous single crystals at large scale for the potential application in other fields.

摘要

设计材料的催化活性和稳定性需要确定能够在表面定制活性位点的结构特征。多孔单晶结合了有序的晶格结构和无序的相互连接的孔隙,因此它们将提供精确的结构特征优势,以识别和设计表面的活性位点。在此,我们制备了厘米级的多孔单晶氮化钒(VN),并进一步在晶格中掺杂铁(FeVN)和钴(CoVN)以设计表面的活性位点。我们证明,活性表面由V-N、Fe-N和Co-N结构的不饱和配位组成,这导致在多孔单晶整体表面产生高密度的活性位点。相互连接的孔隙有助于孔隙增强的流动,以促进物质在多孔结构中的扩散。在乙烷非氧化脱氢制乙烯反应中,我们展示了在660°C下乙烷转化率为36%,乙烯选择性为99%的优异性能。由于其单晶结构,整体材料具有显著的稳定性,即使在整体反应器中连续运行200小时后也未观察到降解,仍能保持优异性能。这项工作不仅展示了有效的结构工程,可同时提高实用催化材料的稳定性和整体性能,还为大规模多孔单晶的元素掺杂提供了一条新途径,有望应用于其他领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4538/9297723/31a5096572f6/RESEARCH2022-9861518.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验