Suppr超能文献

石墨烯量子点通过干扰 2 的甲基化水平来破坏胚胎干细胞分化。

Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of 2.

机构信息

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.

出版信息

Environ Sci Technol. 2021 Mar 2;55(5):3144-3155. doi: 10.1021/acs.est.0c07359. Epub 2021 Feb 11.

Abstract

The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.

摘要

石墨烯量子点(GQDs)在生物医学应用中的巨大潜力引起了人们对其在人类健康风险的日益关注。然而,目前的研究主要集中在氧化应激、细胞凋亡和其他一般毒性作用上;关于发育毒性及其相关调控机制的知识仍然远远不够。我们的研究揭示了 GQDs 通过一种新型的 DNA 甲基化表观遗传机制导致小鼠胚胎干细胞(mESCs)发育迟缓。具体来说,GQDs 主要通过能量依赖的内吞作用进入细胞,即使在 48 小时清除期后,仍有很大一部分内吞的 GQDs 留在细胞内。虽然 GQDs 没有表现出细胞毒性或对细胞多能性有任何影响,但在 GQD 预处理组中,Sox2 水平的上调导致 mESCs 向胚状体(EBs)的分化明显延迟。重要的是,这种效应可能是由于 GQD 通过改变甲基转移酶和去甲基化酶转录表达抑制 Sox2 的 CpG 甲基化所致,而去甲基化酶抑制剂 bobcat339 盐酸盐可降低 GQD 诱导的 Sox2 上调。本研究首次证明 GQDs 破坏了 mESCs 的分化程序,可能导致发育迟缓。在妊娠或早期发育阶段暴露于这种纳米材料会造成不良的健康风险,值得更多关注。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验