Research and Post-Graduate Department of Chemistry, St. Berchmans College, Changanacherry, Mahatma Gandhi University, Kottayam, Kerala, India.
School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, India.
Luminescence. 2021 Jun;36(4):1032-1047. doi: 10.1002/bio.4029. Epub 2021 Feb 24.
Electrospinning is the most favourable method for production of polymer nanofibres. In this study, we prepared a samarium β-diketonate complex that incorporated pure, surface-roughened and coaxial hollow poly(methylmethacrylate) (PMMA) nanofibres through electrospinning. The successful incorporation of this samarium complex into the PMMA nanofibres with different architectures was elucidated through various structural and morphological studies. Optical investigations as well as other characterization techniques for the pure, surface-roughened and coaxial hollow PMMA nanofibres before and after incorporating the samarium β-diketonate complex explained the host matrix nature of the PMMA nanofibres. Photoluminescence properties of the pure and structurally modified PMMA nanofibres were enhanced two or three times after incorporating the samarium complex into the fibre. Comparison of the optical properties between the pure and structurally modified PMMA nanofibres incorporating the samarium β-diketonate complex demonstrated the structural and optical improvements as well as the better host matrix nature of the surface-roughened and coaxial hollow PMMA nanofibres over pure PMMA nanofibres for the samarium β-diketonate complex. These optical enhancements make these materials applicable for various optical devices.
静电纺丝是制备聚合物纳米纤维最有利的方法。在这项研究中,我们通过静电纺丝制备了一种钐β-二酮配合物,将其掺入纯的、表面粗糙化的和同轴中空聚甲基丙烯酸甲酯(PMMA)纳米纤维中。通过各种结构和形态研究,阐明了这种钐配合物成功掺入具有不同结构的 PMMA 纳米纤维中。对纯的、表面粗糙化的和同轴中空 PMMA 纳米纤维在掺入钐β-二酮配合物前后进行了光学研究以及其他表征技术,解释了 PMMA 纳米纤维的主体基质性质。将钐配合物掺入纤维中后,纯和结构修饰的 PMMA 纳米纤维的荧光性能提高了两到三倍。将掺入钐 β-二酮配合物的纯和结构修饰的 PMMA 纳米纤维的光学性质进行比较,证明了表面粗糙化和同轴中空 PMMA 纳米纤维在结构和光学方面的改进以及更好的主体基质性质,优于纯 PMMA 纳米纤维。这些光学增强使这些材料适用于各种光学器件。