Suppr超能文献

席尔瓦基于模式分类法在 HPV 相关的宫颈内膜腺癌中的应用,以及原位腺癌与浸润性腺癌的鉴别:国际妇科病理学会的相关问题和建议。

The Silva Pattern-based Classification for HPV-associated Invasive Endocervical Adenocarcinoma and the Distinction Between In Situ and Invasive Adenocarcinoma: Relevant Issues and Recommendations From the International Society of Gynecological Pathologists.

出版信息

Int J Gynecol Pathol. 2021 Mar 1;40(Suppl 1):S48-S65. doi: 10.1097/PGP.0000000000000735.

Abstract

The Silva pattern-based classification for human papilloma virus-associated invasive adenocarcinoma has emerged as a reliable system to predict risk of lymph node metastasis and recurrences. Although not a part of any staging system yet, it has been incorporated in synoptic reports as established by the College of American Pathologists (CAP) and the International Collaboration on Cancer Reporting (ICCR). Moreover, the current National Comprehensive Cancer Network (NCCN) guidelines include this classification as an "emergent concept." In order to facilitate the understating and application of this new classification by all pathologists, the ISGyP Endocervical Adenocarcinoma Project Working Group presents herein all the current evidence on the Silva classification and aims to provide recommendations for its implementation in practice, including interpretation, reporting, and application to biopsy and resection specimens. In addition, this article addresses the distinction of human papilloma virus-associated adenocarcinoma in situ and gastric type adenocarcinoma in situ from their invasive counterparts.

摘要

基于 Silva 模式的人乳头瘤病毒相关性浸润性腺癌分类已经成为预测淋巴结转移和复发风险的可靠系统。尽管尚未成为任何分期系统的一部分,但它已被纳入美国病理学家学会 (College of American Pathologists, CAP) 和国际癌症报告协作组织 (International Collaboration on Cancer Reporting, ICCR) 制定的综合报告中。此外,目前的国家综合癌症网络 (National Comprehensive Cancer Network, NCCN) 指南将该分类作为“新兴概念”包含在内。为了便于所有病理学家理解和应用这一新分类,ISGyP 宫颈内膜腺癌项目工作组在此呈现了关于 Silva 分类的所有现有证据,并旨在为其在实践中的实施提供建议,包括解释、报告以及在活检和切除标本中的应用。此外,本文还讨论了人乳头瘤病毒相关性原位腺癌和胃型原位腺癌与侵袭性对应物的区别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9595/7969170/c10eef298e0f/pgp-40-s048-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验