Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China.
GE Healthcare, Computed Tomography Research Center, Beijing, 100176, PR China.
Br J Radiol. 2021 Apr 1;94(1120):20201291. doi: 10.1259/bjr.20201291. Epub 2021 Feb 24.
To compare the image quality of low-dose CT urography (LD-CTU) using deep learning image reconstruction (DLIR) with conventional CTU (C-CTU) using adaptive statistical iterative reconstruction (ASIR-V).
This was a prospective, single-institutional study using the excretory phase CTU images for analysis. Patients were assigned to the LD-DLIR group (100kV and automatic mA modulation for noise index (NI) of 23) and C-ASIR-V group (100kV and NI of 10) according to the scan protocols in the excretory phase. Two radiologists independently assessed the overall image quality, artifacts, noise and sharpness of urinary tracts. Additionally, the mean CT attenuation, signal-to-noise ratio (SNR) and contrast-to-noise (CNR) in the urinary tracts were evaluated.
26 patients each were included in the LD-DLIR group (10 males and 16 females; mean age: 57.23 years, range: 33-76 years) and C-ASIR-V group (14 males and 12 females; mean age: 60 years, range: 33-77 years). LD-DLIR group used a significantly lower effective radiation dose compared with the C-ASIR-V group (2.01 ± 0.44 mSv 6.9 ± 1.46 mSv, < 0.001). LD-DLIR group showed good overall image quality with average score >4 and was similar to that of the C-ASIR-V group. Both groups had adequate and similar attenuation value, SNR and CNR in most segments of urinary tracts.
It is feasibility to provide comparable image quality while reducing 71% radiation dose in low-dose CTU with a deep learning image reconstruction algorithm compared to the conventional CTU with ASIR-V.
(1) CT urography with deep learning reconstruction algorithm can reduce the radiation dose by 71% while still maintaining image quality.
比较基于深度学习图像重建(DLIR)的低剂量 CT 尿路造影术(LD-CTU)与基于自适应统计迭代重建(ASIR-V)的常规 CTU(C-CTU)的图像质量。
本研究为前瞻性单中心研究,采用排泄期 CTU 图像进行分析。根据排泄期扫描方案,患者被分为 LD-DLIR 组(100kV 和自动毫安调制噪声指数(NI)为 23)和 C-ASIR-V 组(100kV 和 NI 为 10)。两名放射科医生分别评估了尿路的整体图像质量、伪影、噪声和锐利度。此外,还评估了尿路的平均 CT 衰减值、信噪比(SNR)和对比噪声比(CNR)。
LD-DLIR 组(10 名男性和 16 名女性;平均年龄:57.23 岁,范围:33-76 岁)和 C-ASIR-V 组(14 名男性和 12 名女性;平均年龄:60 岁,范围:33-77 岁)各纳入 26 例患者。与 C-ASIR-V 组相比,LD-DLIR 组的有效辐射剂量显著降低(2.01±0.44 mSv 6.9±1.46 mSv,<0.001)。LD-DLIR 组的整体图像质量较好,平均评分>4,与 C-ASIR-V 组相似。两组在大多数尿路节段均具有足够且相似的衰减值、SNR 和 CNR。
与基于 ASIR-V 的常规 CTU 相比,使用深度学习图像重建算法的低剂量 CTU 可在提供可比图像质量的同时将辐射剂量降低 71%。
(1)基于深度学习重建算法的 CT 尿路造影术可将辐射剂量降低 71%,同时保持图像质量。