Suppr超能文献

基于深度学习的图像重建与自适应统计迭代重建-Veo在肾脏和肾上腺计算机断层扫描中对图像质量的影响比较。

Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography.

作者信息

Bie Yifan, Yang Shuo, Li Xingchao, Zhao Kun, Zhang Changlei, Zhong Hai

机构信息

Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

出版信息

J Xray Sci Technol. 2022;30(3):409-418. doi: 10.3233/XST-211105.

Abstract

OBJECTIVE

To evaluate image quality of deep learning-based image reconstruction (DLIR) in contrast-enhanced renal and adrenal computed tomography (CT) compared with adaptive statistical iterative reconstruction-Veo (ASiR-V).

METHODS

We prospectively recruited 52 patients. All images were reconstructed with ASiR-V 30%, ASiR-V 70%, and DLIR at low, medium, and high reconstruction strengths. CT number, noise, noise reduction rate, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated within the region of interest (ROI) on subcutaneous fat, bilateral renal cortices, renal medulla, renal arteries, and adrenal glands. For qualitative analyses, the differentiation of the renal cortex and medulla, conspicuity of the adrenal gland boundary, sharpness, artifacts, and subjective noise were assessed. The overall image quality was calculated on a scale from 0 (worst) to 15 (best) based on the five values above and the score≥9 was acceptable.

RESULTS

CT number does not significantly differ between the reconstruction datasets. Noise does not significantly differ between ASiR-V 30% and DLIR-L, but it is significantly lower using ASiR-V 70%, DLIR-M, and DLIR-H. The noise reduction rate relative to ASiR-V 30% is significantly different between the DLIR groups and ASiR-V 70%, and DLIR-H yields the highest noise reduction rate (61.6%). SNR and CNR are higher for DLIR-M, DLIR-H, and ASiR-V 70% than for ASiR-V 30% and DLIR-L. DLIR-H shows the best SNR and CNR. The overall image quality yields the same pattern for DLIR-H, with the highest score. Percentages of cases with overall image quality score≥9 are 100% (DLIR-H), 94.23% (DLIR-M), 90.38% (ASiR-V70%), 67.31% (DLIR-L), and 63.46% (ASiR-V30%), respectively.

CONCLUSIONS

DLIR significantly improved the objective and subjective image quality of renal and adrenal CTs, yielding superior noise reduction compared with ASiR-V.

摘要

目的

对比基于深度学习的图像重建(DLIR)与自适应统计迭代重建-Veo(ASiR-V)在肾和肾上腺增强计算机断层扫描(CT)中的图像质量。

方法

前瞻性招募52例患者。所有图像均采用30% ASiR-V、70% ASiR-V以及低、中、高重建强度的DLIR进行重建。在皮下脂肪、双侧肾皮质、肾髓质、肾动脉和肾上腺的感兴趣区域(ROI)内测量并计算CT值、噪声、降噪率、信噪比(SNR)和对比噪声比(CNR)。进行定性分析时,评估肾皮质和髓质的区分度、肾上腺边界的清晰度、锐度、伪影和主观噪声。根据上述五个值,以0(最差)至15(最佳)的量表计算整体图像质量,得分≥9为可接受。

结果

各重建数据集之间的CT值无显著差异。30% ASiR-V与低强度DLIR(DLIR-L)之间的噪声无显著差异,但70% ASiR-V、中等强度DLIR(DLIR-M)和高强度DLIR(DLIR-H)的噪声显著更低。DLIR各分组与70% ASiR-V相比,相对于30% ASiR-V的降噪率有显著差异,且DLIR-H的降噪率最高(61.6%)。DLIR-M、DLIR-H和70% ASiR-V的SNR和CNR高于30% ASiR-V和DLIR-L。DLIR-H的SNR和CNR最佳。DLIR-H的整体图像质量呈现相同模式,得分最高。整体图像质量得分≥9的病例百分比分别为100%(DLIR-H)、94.23%(DLIR-M)、90.38%(70% ASiR-V)、67.31%(DLIR-L)和63.46%(30% ASiR-V)。

结论

DLIR显著改善了肾和肾上腺CT的客观和主观图像质量,与ASiR-V相比,降噪效果更佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08fb/9108564/f1fe70754252/xst-30-xst211105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验