Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America.
School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
PLoS Genet. 2021 Feb 11;17(2):e1009066. doi: 10.1371/journal.pgen.1009066. eCollection 2021 Feb.
Intracellular Ca2+ level is under strict regulation through calcium channels and storage pools including the endoplasmic reticulum (ER). Mutations in certain ion channel subunits, which cause mis-regulated Ca2+ influx, induce the excitotoxic necrosis of neurons. In the nematode Caenorhabditis elegans, dominant mutations in the DEG/ENaC sodium channel subunit MEC-4 induce six mechanosensory (touch) neurons to undergo excitotoxic necrosis. These necrotic neurons are subsequently engulfed and digested by neighboring hypodermal cells. We previously reported that necrotic touch neurons actively expose phosphatidylserine (PS), an "eat-me" signal, to attract engulfing cells. However, the upstream signal that triggers PS externalization remained elusive. Here we report that a robust and transient increase of cytoplasmic Ca2+ level occurs prior to the exposure of PS on necrotic touch neurons. Inhibiting the release of Ca2+ from the ER, either pharmacologically or genetically, specifically impairs PS exposure on necrotic but not apoptotic cells. On the contrary, inhibiting the reuptake of cytoplasmic Ca2+ into the ER induces ectopic necrosis and PS exposure. Remarkably, PS exposure occurs independently of other necrosis events. Furthermore, unlike in mutants of DEG/ENaC channels, in dominant mutants of deg-3 and trp-4, which encode Ca2+ channels, PS exposure on necrotic neurons does not rely on the ER Ca2+ pool. Our findings indicate that high levels of cytoplasmic Ca2+ are necessary and sufficient for PS exposure. They further reveal two Ca2+-dependent, necrosis-specific pathways that promote PS exposure, a "two-step" pathway initiated by a modest influx of Ca2+ and further boosted by the release of Ca2+ from the ER, and another, ER-independent, pathway. Moreover, we found that ANOH-1, the worm homolog of mammalian phospholipid scramblase TMEM16F, is necessary for efficient PS exposure in thapsgargin-treated worms and trp-4 mutants, like in mec-4 mutants. We propose that both the ER-mediated and ER-independent Ca2+ pathways promote PS externalization through activating ANOH-1.
细胞内钙离子水平通过钙通道和储存池(包括内质网)受到严格调节。某些离子通道亚基的突变导致钙离子内流调节异常,从而诱导神经元兴奋性坏死。在秀丽隐杆线虫中,DEG/ENaC 钠通道亚基 MEC-4 的显性突变诱导六个机械感觉(触摸)神经元发生兴奋性坏死。这些坏死的神经元随后被邻近的真皮细胞吞噬和消化。我们之前报道过,坏死的触摸神经元主动暴露磷脂酰丝氨酸(PS),一种“吃我”信号,以吸引吞噬细胞。然而,触发 PS 外化的上游信号仍然难以捉摸。在这里,我们报告说,在 PS 暴露于坏死的触摸神经元之前,细胞质钙离子水平会发生强烈而短暂的增加。无论是通过药理学还是遗传学抑制内质网中钙离子的释放,都会特异性地损害坏死但不损害凋亡细胞的 PS 暴露。相反,抑制细胞质钙离子重新摄取到内质网中会诱导异位坏死和 PS 暴露。值得注意的是,PS 暴露与其他坏死事件无关。此外,与 deg-ENaC 通道突变体不同,在编码 Ca2+通道的 deg-3 和 trp-4 显性突变体中,PS 暴露于坏死神经元不依赖于内质网 Ca2+池。我们的发现表明,细胞质钙离子水平升高是 PS 暴露的必要和充分条件。它们进一步揭示了两种依赖 Ca2+的、坏死特异性的途径来促进 PS 暴露,一种是由适度的 Ca2+内流启动的“两步”途径,进一步由内质网中 Ca2+的释放增强,另一种是不依赖内质网的途径。此外,我们发现,线虫磷脂翻转酶 TMEM16F 的同源物 ANOH-1 对于在 thapsgargin 处理的线虫和 trp-4 突变体(与 mec-4 突变体一样)中有效 PS 暴露是必要的。我们提出,内质网介导的和不依赖内质网的 Ca2+途径都通过激活 ANOH-1 来促进 PS 外化。