Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
Sci Total Environ. 2021 Jun 10;772:145478. doi: 10.1016/j.scitotenv.2021.145478. Epub 2021 Jan 30.
Nanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities. However, imaging and detection of nanomaterials in situ, in wet unfixed and even live samples, such as living isolated cells, microorganisms, protozoans and miniature invertebrates using electron microscopy is practically impossible, because of the elaborate sample preparation requiring chemical fixation, contrast staining, matrix embedding and exposure into vacuum. Atomic force microscopy, in several cases, can be used for imaging and mechanical analysis of live cells and organisms under ambient conditions, however this technique allows for investigation of surfaces. Therefore, a different approach allowing for imaging and differentiation of nanoscale particles in wet samples is required. Dark-field microscopy as an optical microscopy technique has been popular among researchers, mostly for imaging relatively large specimens. In recent years, the so-called "enhanced dark field" microscopy based on using higher numerical aperture light condensers and variable numerical aperture objectives has emegred, which allows for imaging of nanoscale particles (starting from 5 nm nanospheres) using almost conventional optical microscopy methodology. Hyperspectral imaging can turn a dark-field optical microscope into a powerful chemical characterisation tool. As a result, this technique is becoming popular in environmental nanotoxicology studies. In this Review Article we introduce the reader into the methodology of enhanced dark-field and dark-field-based hyperspectral microscopy, covering the most important advances in this rapidly-expanding area of environmental nanotoxicology.
纳米级污染物(包括工程纳米粒子和纳米塑料)对生物和环境构成重大威胁。尽管存在许多常规方法,但在细胞、组织和生物体中快速、无损地检测和识别纳米级材料仍然具有挑战性。这些用于在细胞质内以及在细胞或组织外表面(如电子或扫描探针显微镜)对纳米粒子进行成像和特性分析的方法无疑是强大的工具,具有出色的分辨率,并辅以化学分析能力。然而,由于需要化学固定、对比染色、基质嵌入和暴露在真空中的复杂样品制备,实际上不可能使用电子显微镜对原位、未固定的甚至活的样品(如活的分离细胞、微生物、原生动物和小型无脊椎动物)中的纳米材料进行成像和检测。在环境条件下,原子力显微镜在某些情况下可用于对活细胞和生物体进行成像和机械分析,但是该技术仅允许研究表面。因此,需要一种不同的方法来对湿样品中的纳米级颗粒进行成像和区分。暗场显微镜作为一种光学显微镜技术,在研究人员中很受欢迎,主要用于对相对较大的标本进行成像。近年来,基于使用更高数值孔径的聚光器和可变数值孔径物镜的所谓“增强暗场”显微镜已经出现,该显微镜允许使用几乎传统的光学显微镜方法对纳米级颗粒(从 5nm 纳米球开始)进行成像。超光谱成像可以使暗场光学显微镜成为强大的化学特性分析工具。因此,该技术在环境纳米毒理学研究中越来越受欢迎。在这篇综述文章中,我们将向读者介绍增强暗场和基于暗场的超光谱显微镜的方法学,涵盖了该技术在快速发展的环境纳米毒理学领域的最重要进展。