Suppr超能文献

分子防御中黏液纤毛呼吸上皮的完整性及对肺部病毒感染的易感性

Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections.

作者信息

Kaushik Manish Singh, Chakraborty Soura, Veleri Shobi, Kateriya Suneel

机构信息

Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.

Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India.

出版信息

Biology (Basel). 2021 Jan 29;10(2):95. doi: 10.3390/biology10020095.

Abstract

Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.

摘要

由纤毛细胞和杯状细胞介导的黏液纤毛防御对呼吸健康至关重要。呼吸道上皮表面纤毛运动的协同作用以及黏液的病原体捕获功能有助于维持气道健康。因此,肺部防御的遗传或后天缺陷会引发呼吸系统疾病和继发性微生物感染,这些感染会损害肺功能,甚至可能致命。患有慢性和急性呼吸道疾病的个体更容易患上严重的冠状病毒病-19(COVID-19),因此应得到妥善管理。鉴于当前的大流行情况,我们回顾了目前对呼吸系统及其分子成分的认识,主要关注由于呼吸道上皮完整性受损而产生的病理生理学,如异常的纤毛运动、纤毛丧失和功能障碍、纤毛细胞破坏以及黏液流变学的变化。该综述包括冠状病毒感染对调节黏液纤毛清除的分子机制产生影响的蛋白质相互作用网络。我们还深入探讨了严重急性呼吸综合征冠状病毒-2感染后,人类鼻咽部与黏液纤毛清除装置相关的基因转录网络的改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/7911113/a80ab1403e9e/biology-10-00095-g001.jpg

相似文献

2
Role of mucociliary clearance system in respiratory diseases.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Feb 28;48(2):275-284. doi: 10.11817/j.issn.1672-7347.2023.220372.
3
Airway Epithelial Differentiation and Mucociliary Clearance.
Ann Am Thorac Soc. 2018 Nov;15(Suppl 3):S143-S148. doi: 10.1513/AnnalsATS.201802-128AW.
4
Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models.
J Aerosol Med Pulm Drug Deliv. 2008 Mar;21(1):13-24. doi: 10.1089/jamp.2007.0659.
5
Acquired cilia dysfunction in chronic rhinosinusitis.
Am J Rhinol Allergy. 2012 Jan-Feb;26(1):1-6. doi: 10.2500/ajra.2012.26.3716.
6
Influenza A virus enhances ciliary activity and mucociliary clearance via TLR3 in airway epithelium.
Respir Res. 2020 Oct 27;21(1):282. doi: 10.1186/s12931-020-01555-1.
7
Influence of silica particles on mucociliary structure and MUC5B expression in airways of C57BL/6 mice.
Exp Lung Res. 2020 Sep;46(7):217-225. doi: 10.1080/01902148.2020.1762804. Epub 2020 May 6.
8
Local mucociliary defence mechanisms.
Paediatr Respir Rev. 2000 Mar;1(1):27-34. doi: 10.1053/prrv.2000.0009.
9
Continuous mucociliary transport by primary human airway epithelial cells in vitro.
Am J Physiol Lung Cell Mol Physiol. 2015 Jul 15;309(2):L99-108. doi: 10.1152/ajplung.00024.2015. Epub 2015 May 15.
10
[Mucociliary clearance system in lung defense].
Rev Med Chil. 2014 May;142(5):606-15. doi: 10.4067/S0034-98872014000500009.

引用本文的文献

2
Sputum quality affects assessment of airway microbiology in childhood asthma.
Respir Res. 2025 Jun 4;26(1):209. doi: 10.1186/s12931-025-03266-x.
4
STAT Signature Dish: Serving Immunity with a Side of Dietary Control.
Biomolecules. 2025 Mar 26;15(4):487. doi: 10.3390/biom15040487.
5
Baseline lung function and risk of incident tuberculosis: a nationwide population-based cohort study.
PLoS One. 2025 Apr 29;20(4):e0322616. doi: 10.1371/journal.pone.0322616. eCollection 2025.
7
Physiology and pathophysiology of mucus and mucolytic use in critically ill patients.
Crit Care. 2025 Feb 7;29(1):68. doi: 10.1186/s13054-025-05286-x.
8
Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70000. doi: 10.1002/wnan.70000.
9
Advanced Lung-on-a-Chip Technology: Mimicking the Complex Human Lung Microenvironment.
Int J Biol Sci. 2025 Jan 1;21(1):17-39. doi: 10.7150/ijbs.105702. eCollection 2025.
10
Human coronaviruses: activation and antagonism of innate immune responses.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001623. doi: 10.1128/mmbr.00016-23. Epub 2024 Dec 19.

本文引用的文献

1
Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV.
Nature. 2021 Jun;594(7862):246-252. doi: 10.1038/s41586-021-03493-4. Epub 2021 Apr 12.
2
CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells.
Signal Transduct Target Ther. 2020 Dec 4;5(1):283. doi: 10.1038/s41392-020-00426-x.
3
The IMEx coronavirus interactome: an evolving map of Coronaviridae-host molecular interactions.
Database (Oxford). 2020 Jan 1;2020. doi: 10.1093/database/baaa096.
4
Neuropilin-1 is a host factor for SARS-CoV-2 infection.
Science. 2020 Nov 13;370(6518):861-865. doi: 10.1126/science.abd3072. Epub 2020 Oct 20.
5
Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.
Science. 2020 Nov 13;370(6518):856-860. doi: 10.1126/science.abd2985. Epub 2020 Oct 20.
6
SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2.
Cell. 2020 Nov 12;183(4):1043-1057.e15. doi: 10.1016/j.cell.2020.09.033. Epub 2020 Sep 14.
7
In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age.
PLoS Biol. 2020 Sep 8;18(9):e3000849. doi: 10.1371/journal.pbio.3000849. eCollection 2020 Sep.
9
COVID-19, cilia, and smell.
FEBS J. 2020 Sep;287(17):3672-3676. doi: 10.1111/febs.15491. Epub 2020 Aug 6.
10
The Global Phosphorylation Landscape of SARS-CoV-2 Infection.
Cell. 2020 Aug 6;182(3):685-712.e19. doi: 10.1016/j.cell.2020.06.034. Epub 2020 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验