Shoji Yasushi, Tamaki Ryo, Okada Yoshitaka
Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan.
Nanomaterials (Basel). 2021 Jan 29;11(2):344. doi: 10.3390/nano11020344.
From the viewpoint of band engineering, the use of GaSb quantum nanostructures is expected to lead to highly efficient intermediate-band solar cells (IBSCs). In IBSCs, current generation via two-step optical excitations through the intermediate band is the key to the operating principle. This mechanism requires the formation of a strong quantum confinement structure. Therefore, we focused on the material system with GaSb quantum nanostructures embedded in AlGaAs layers. However, studies involving crystal growth of GaSb quantum nanostructures on AlGaAs layers have rarely been reported. In our work, we fabricated GaSb quantum dots (QDs) and quantum rings (QRs) on AlGaAs layers via molecular-beam epitaxy. Using the Stranski-Krastanov growth mode, we demonstrated that lens-shaped GaSb QDs can be fabricated on AlGaAs layers. In addition, atomic force microscopy measurements revealed that GaSb QDs could be changed to QRs under irradiation with an As molecular beam even when they were deposited onto AlGaAs layers. We also investigated the suitability of GaSb/AlGaAs QDSCs and QRSCs for use in IBSCs by evaluating the temperature characteristics of their external quantum efficiency. For the GaSb/AlGaAs material system, the QDSC was found to have slightly better two-step optical excitation temperature characteristics than the QRSC.
从能带工程的角度来看,使用GaSb量子纳米结构有望制造出高效的中间带太阳能电池(IBSC)。在IBSC中,通过中间带进行两步光激发来产生电流是其工作原理的关键。这种机制需要形成强大的量子限制结构。因此,我们将重点放在了将GaSb量子纳米结构嵌入AlGaAs层的材料体系上。然而,关于在AlGaAs层上进行GaSb量子纳米结构晶体生长的研究报道很少。在我们的工作中,我们通过分子束外延在AlGaAs层上制备了GaSb量子点(QD)和量子环(QR)。利用斯特兰斯基-克拉斯坦诺夫生长模式,我们证明了可以在AlGaAs层上制备出透镜状的GaSb QD。此外,原子力显微镜测量结果表明,即使将GaSb QD沉积在AlGaAs层上,在用As分子束照射时它们也可以转变为QR。我们还通过评估GaSb/AlGaAs量子点太阳能电池(QDSC)和量子环太阳能电池(QRSC)的外量子效率的温度特性,研究了它们用于IBSC的适用性。对于GaSb/AlGaAs材料体系,发现QDSC的两步光激发温度特性略优于QRSC。