Department of Biomaterials, Faculty of Dental Science, Kyushu University, Maidashi, Fukuoka 812-8582, Japan.
Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
Int J Mol Sci. 2021 Jan 29;22(3):1373. doi: 10.3390/ijms22031373.
Two types of melanin pigments, brown to black eumelanin and yellow to reddish brown pheomelanin, are biosynthesized through a branched reaction, which is associated with the key intermediate dopaquinone (DQ). In the presence of l-cysteine, DQ immediately binds to the -SH group, resulting in the formation of cysteinyldopa necessary for the pheomelanin production. l-Cysteine prefers to bond with aromatic carbons adjacent to the carbonyl groups, namely C5 and C2. Surprisingly, this Michael addition takes place at 1,6-position of the C5 (and to some extent at C2) rather than usually expected 1,4-position. Such an anomaly on the reactivity necessitates an atomic-scale understanding of the binding mechanism. Using density functional theory-based calculations, we investigated the binding of l-cysteine thiolate (Cys-S) to DQ. Interestingly, the C2-S bonded intermediate was less energetically stable than the C6-S bonded case. Furthermore, the most preferred Cys-S-attacked intermediate is at the carbon-carbon bridge between the two carbonyls (C3-C4 bridge site) but not on the C5 site. This structure allows the Cys-S to migrate onto the adjacent C5 or C2 with small activation energies. Further simulation demonstrated a possible conversion pathway of the C5-S (and C2-S) intermediate into 5--cysteinyldopa (and 2--cysteinyldopa), which is the experimentally identified major (and minor) product. Based on the results, we propose that the binding of Cys-S to DQ proceeds via the following path: (i) coordination of Cys-S to C3-C4 bridge, (ii) migration of Cys-S to C5 (C2), (iii) proton rearrangement from cysteinyl -NH to O4 (O3), and (iv) proton rearrangement from C5 (C2) to O3 (O4).
两种黑色素色素,棕色到黑色的真黑色素和黄色到红棕色的褐黑色素,通过一个分支反应生物合成,该反应与关键中间体多巴醌(DQ)有关。在 l-半胱氨酸存在下,DQ 立即与 -SH 基团结合,形成产生褐黑色素所必需的半胱氨酰多巴。l-半胱氨酸更喜欢与羰基相邻的芳环碳原子结合,即 C5 和 C2。令人惊讶的是,这种迈克尔加成发生在 C5 的 1,6-位(在一定程度上也发生在 C2 位),而不是通常预期的 1,4-位。这种反应性的异常需要对结合机制进行原子尺度的理解。使用基于密度泛函理论的计算,我们研究了 l-半胱氨酸硫醇(Cys-S)与 DQ 的结合。有趣的是,C2-S 键合的中间产物的能量稳定性低于 C6-S 键合的情况。此外,最优先的 Cys-S 攻击的中间产物位于两个羰基之间的碳-碳桥(C3-C4 桥位),而不是在 C5 位。这种结构允许 Cys-S 以较小的活化能迁移到相邻的 C5 或 C2 上。进一步的模拟表明,C5-S(和 C2-S)中间产物转化为 5--半胱氨酰多巴(和 2--半胱氨酰多巴)的可能转化途径,这是实验中鉴定的主要(和次要)产物。基于这些结果,我们提出 Cys-S 与 DQ 的结合遵循以下途径:(i)Cys-S 与 C3-C4 桥的配位,(ii)Cys-S 向 C5(C2)的迁移,(iii)从半胱氨酸 -NH 到 O4(O3)的质子重排,和(iv)从 C5(C2)到 O3(O4)的质子重排。