Kishida Ryo, Saputro Adhitya G, Kasai Hideaki
Department of Applied Physics, Osaka University, Suita, Osaka, Japan.
Department of Applied Physics, Osaka University, Suita, Osaka, Japan; Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka, Japan.
Biochim Biophys Acta. 2015 Feb;1850(2):281-6. doi: 10.1016/j.bbagen.2014.10.024. Epub 2014 Oct 28.
Tautomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA) is a biologically crucial reaction relevant to melanin synthesis, cellular antioxidation, and cross-talk among epidermal cells. Since dopachrome spontaneously converts into 5,6-dihydroxyindole (DHI) via decarboxylation without any enzymes at physiologically usual pH, the mechanism of how tautomerization to DHICA occurs in physiological system is a subject of intense debate. A previous work has found that Cu(II) is an important factor to catalyze the tautomerization of dopachrome to DHICA. However, the effect of Cu(II) on the tautomerization has not been clarified at the atomic level.
We propose the reaction mechanism of the tautomerization to DHICA by Cu(II) from density functional theory-based calculation.
We clarified that the activation barriers of α-deprotonation, β-deprotonation, and decarboxylation from dopachrome are significantly reduced by coordination of Cu(II) to quinonoid oxygens (5,6-oxygens) of dopachrome, with the lowest activation barrier of β-deprotonation among them. In contrast to our previous work, in which β-deprotonation and quinonoid protonation (O5/O6-protonation) were shown to be important to form DHI, our results show that the Cu(II) coordination to quinonoid oxygens inhibits the quinonoid protonation, leading to the preference of proton rearrangement from β-carbon to carboxylate group but not to the quinonoid oxygens.
Integrating these results, we conclude that dopachrome tautomerization first proceeds via proton rearrangement from β-carbon to carboxylate group and subsequently undergoes α-deprotonation to form DHICA.
This study would provide the biochemical basis of DHICA metabolism and the generalized view of dopachrome conversion which is important to understand melanogenesis.
多巴色素向5,6 - 二羟基吲哚 - 2 - 羧酸(DHICA)的互变异构是与黑色素合成、细胞抗氧化以及表皮细胞间相互作用相关的生物学关键反应。由于在生理pH条件下,多巴色素无需任何酶即可通过脱羧自发转化为5,6 - 二羟基吲哚(DHI),因此在生理系统中多巴色素如何互变异构为DHICA的机制一直是激烈争论的焦点。此前的一项研究发现,铜(II)是催化多巴色素互变异构为DHICA的重要因素。然而,铜(II)对互变异构的影响在原子水平上尚未得到阐明。
我们基于密度泛函理论计算提出了铜(II)催化多巴色素互变异构为DHICA的反应机制。
我们阐明,通过铜(II)与多巴色素醌型氧(5,6 - 氧)配位,多巴色素的α - 去质子化、β - 去质子化和脱羧的活化能垒显著降低,其中β - 去质子化的活化能垒最低。与我们之前的研究不同,在之前的研究中β - 去质子化和醌型质子化(O5/O6 - 质子化)对形成DHI很重要,我们的结果表明铜(II)与醌型氧配位会抑制醌型质子化,导致质子优先从β - 碳重排至羧基而非醌型氧。
综合这些结果,我们得出结论,多巴色素互变异构首先通过质子从β - 碳重排至羧基进行,随后进行α - 去质子化以形成DHICA。
本研究将为DHICA代谢提供生化基础,并为多巴色素转化提供广义视角,这对于理解黑色素生成很重要。