New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
Theoretical Sciences Unit, JNCASR, Jakkur P.O., Bangalore 560064, India.
Science. 2021 Feb 12;371(6530):722-727. doi: 10.1126/science.abb3517.
High thermoelectric performance is generally achieved through either electronic structure modulations or phonon scattering enhancements, which often counteract each other. A leap in performance requires innovative strategies that simultaneously optimize electronic and phonon transports. We demonstrate high thermoelectric performance with a near room-temperature figure of merit, ~ 1.5, and a maximum ~ 2.6 at 573 kelvin, by optimizing atomic disorder in cadmium-doped polycrystalline silver antimony telluride (AgSbTe). Cadmium doping in AgSbTe enhances cationic ordering, which simultaneously improves electronic properties by tuning disorder-induced localization of electronic states and reduces lattice thermal conductivity through spontaneous formation of nanoscale (~2 to 4 nanometers) superstructures and coupling of soft vibrations localized within ~1 nanometer around cadmium sites with local strain modulation. The strategy is applicable to most other thermoelectric materials that exhibit inherent atomic disorder.
通过电子结构调制或声子散射增强来实现高热电性能,这两种方法通常相互抵消。要想提高性能,就需要创新的策略,同时优化电子和声子的输运。通过在镉掺杂多晶银锑碲化物(AgSbTe)中优化原子无序,我们实现了高热电性能,在近室温下的优值约为 1.5,在 573 开尔文时最大可达 2.6。镉掺杂在 AgSbTe 中增强了阳离子有序性,通过调节无序诱导的电子态局域化来同时改善电子性能,并通过自发形成纳米级(2 至 4 纳米)超结构和将局部应变调制与镉位附近1 纳米范围内的局部软振动耦合,降低晶格热导率。该策略适用于大多数表现出固有原子无序的其他热电材料。