Suppr超能文献

蒸发电学:利用热电材料从蒸发过程中直接获取电能。

Evapolectrics: Direct Harvesting of Electricity from Evaporation Using Thermoelectrics.

作者信息

Cao Jing, Dong Jinfeng, Wu Jing, Suwardi Ady

机构信息

Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138634 Singapore.

Department of Materials Science and Engineering, National University of Singapore, 117574 Singapore, Singapore.

出版信息

ACS Nano. 2025 Jul 22;19(28):26249-26258. doi: 10.1021/acsnano.5c10693. Epub 2025 Jul 10.

Abstract

Evaporation, a ubiquitous process driving Earth's water-energy cycle, has been largely untapped for energy harvesting. Here, we introduce "evapolectrics," a scalable strategy that directly converts evaporation enthalpy into electricity via thermoelectric generators (TEGs). By leveraging porous graphite coatings and optimizing wind speeds (2.8 m/s) and wet-bulb depression, a robust temperature gradient (Δ) over 6 °C can be maintained across TEGs. This translates to a power density of 4.2 W/m, which exceeds other ambient energy harvesting technologies, such as triboelectric and hydrovoltaics. We also demonstrate the evapolectrics' ability to sustain a continuous power output of 2.72 mW over 30 min and scalability via a 7 × 7 device array. Unlike intermittent sources like solar or wind, evaporation's perennial nature offers reliable ambient energy harvesting. With global evaporation rates suggesting harvestable energy of ∼10 TJ/year, evapotetics present a transformative approach to power self-sustaining devices, augmented by advances in thermoelectric materials.

摘要

蒸发是驱动地球水 - 能量循环的普遍过程,在能量收集方面很大程度上尚未得到开发。在此,我们引入“蒸发电技术”,这是一种可扩展的策略,通过热电发电机(TEG)将蒸发焓直接转化为电能。通过利用多孔石墨涂层并优化风速(2.8米/秒)和湿球温度差,可在TEG两端维持超过6℃的强大温度梯度(Δ)。这转化为4.2瓦/平方米的功率密度,超过了其他环境能量收集技术,如摩擦电和水力发电技术。我们还展示了蒸发电技术在30分钟内维持2.72毫瓦连续功率输出的能力,以及通过7×7设备阵列实现的可扩展性。与太阳能或风能等间歇性能源不同,蒸发的常年性提供了可靠的环境能量收集。鉴于全球蒸发速率表明每年可收获的能量约为10太焦耳,蒸发电技术借助热电材料的进展,为为自持设备供电提供了一种变革性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fd6/12291591/bac974c894e9/nn5c10693_0001.jpg

相似文献

1
Evapolectrics: Direct Harvesting of Electricity from Evaporation Using Thermoelectrics.
ACS Nano. 2025 Jul 22;19(28):26249-26258. doi: 10.1021/acsnano.5c10693. Epub 2025 Jul 10.
2
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
High-Performance SbTe Thick Films via Diffusion-Induced Structural Tuning for Flexible Thermoelectric Energy Harvesting.
ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44738-44747. doi: 10.1021/acsami.5c10931. Epub 2025 Jul 22.
6
Mechanically Robust Thermoelectric Hydrogel with Superior Thermoelectricity for Low-Grade Thermal Energy Harvesting and Overheating Warning.
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39503-39513. doi: 10.1021/acsami.5c06208. Epub 2025 Jun 30.

本文引用的文献

1
Hydrovoltaic Effects from Mechanical-Electric Coupling at the Water-Solid Interface.
ACS Nano. 2024 Sep 3;18(35):23912-23940. doi: 10.1021/acsnano.4c07900. Epub 2024 Aug 21.
3
Thermoelectric nanowires for dense 3D printed architectures.
Mater Horiz. 2024 Feb 6;11(3):847-854. doi: 10.1039/d3mh01646c.
4
A solution-processed radiative cooling glass.
Science. 2023 Nov 10;382(6671):684-691. doi: 10.1126/science.adi2224. Epub 2023 Nov 9.
5
Plausible photomolecular effect leading to water evaporation exceeding the thermal limit.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2312751120. doi: 10.1073/pnas.2312751120. Epub 2023 Oct 30.
6
Technology Roadmap for Flexible Sensors.
ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9.
7
Scalable thermochromic smart windows with passive radiative cooling regulation.
Science. 2021 Dec 17;374(6574):1501-1504. doi: 10.1126/science.abg0291. Epub 2021 Dec 16.
9
Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments.
Science. 2021 Jul 30;373(6554):556-561. doi: 10.1126/science.abi8668. Epub 2021 Jul 8.
10
Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output.
Nat Nanotechnol. 2021 Jul;16(7):811-819. doi: 10.1038/s41565-021-00903-6. Epub 2021 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验