Khan M Riaz, Li Mingxia, Mao Shipeng, Ali Rashid, Khan Suliman
LSEC and ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
School of Science, China University of Geosciences (Beijing), Xueyuan Lu 29, Beijing, 100083, People's Republic of China.
Sci Rep. 2021 Feb 11;11(1):3691. doi: 10.1038/s41598-021-81581-1.
The key purpose of the existing article is to discuss the effects of various hybrid nanofluids and a simple nanofluid over the heat transfer and friction drags along a stretched surface. The various kinds of hybrid nanofluids and a simple nanofluid together with the effects of aligned magnetic field, nonlinear radiation and suction have been taken into consideration. These hybrid nanofluids are prepared by suspending a couple of distinct nanoparticles [Formula: see text] and [Formula: see text] into the base fluids [Formula: see text] and [Formula: see text]. The comparison of various graphical results of skin friction coefficient, rate of heat transfer, velocity and temperature for two different hybrid nanofluids [Formula: see text]/[Formula: see text], [Formula: see text]/[Formula: see text] and a simple nanofluid [Formula: see text]/[Formula: see text] is considered. Moreover, the impact of surface stretching, aligned magnetic field and thermal radiation over the velocity, temperature, skin friction coefficient and local Nusselt number are also considered. The outcomes drawn from this modern research is that the hybrid nanofluid [Formula: see text]/[Formula: see text] is quite effective in cooling and heating in comparison to the other hybrid nanofluids [Formula: see text]/[Formula: see text], [Formula: see text]/[Formula: see text] and a simple nanofluid [Formula: see text]. Based on these findings we could say that the suspension of multiple particles in the composition of two or more base fluids provides a better rate of heat transfer and limits the friction drag.
现有文章的关键目的是讨论各种混合纳米流体和一种简单纳米流体对沿拉伸表面的传热和摩擦阻力的影响。已经考虑了各种混合纳米流体和一种简单纳米流体,以及对齐磁场、非线性辐射和抽吸的影响。这些混合纳米流体是通过将两种不同的纳米颗粒[公式:见正文]和[公式:见正文]悬浮在基础流体[公式:见正文]和[公式:见正文]中制备而成的。考虑了两种不同混合纳米流体[公式:见正文]/[公式:见正文]、[公式:见正文]/[公式:见正文]和一种简单纳米流体[公式:见正文]/[公式:见正文]的皮肤摩擦系数、传热速率、速度和温度的各种图形结果的比较。此外,还考虑了表面拉伸、对齐磁场和热辐射对速度、温度、皮肤摩擦系数和局部努塞尔数的影响。这项现代研究得出的结果是,与其他混合纳米流体[公式:见正文]/[公式:见正文]、[公式:见正文]/[公式:见正文]和一种简单纳米流体[公式:见正文]相比,混合纳米流体[公式:见正文]/[公式:见正文]在冷却和加热方面相当有效。基于这些发现,我们可以说,在两种或更多种基础流体的成分中悬浮多种颗粒可提供更好的传热速率并限制摩擦阻力。