Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, 85579, Neubiberg, Germany.
Sci Rep. 2021 Feb 11;11(1):3533. doi: 10.1038/s41598-021-81708-4.
Proton minibeam radiotherapy (pMBRT) is a spatial fractionation method using sub-millimeter beams at center-to-center (ctc) distances of a few millimeters to widen the therapeutic index by reduction of side effects in normal tissues. Interlaced minibeams from two opposing or four orthogonal directions are calculated to minimize side effects. In particular, heterogeneous dose distributions applied to the tumor are investigated to evaluate optimized sparing capabilities of normal tissues at the close tumor surrounding. A 5 cm thick tumor is considered at 10 cm depth within a 25 cm thick water phantom. Pencil and planar minibeams are interlaced from two (opposing) directions as well as planar beams from four directions. An initial beam size of σ = 0.2 mm (standard deviation) is assumed in all cases. Tissue sparing potential is evaluated by calculating mean clonogenic cell survival using a linear-quadratic model on the calculated dose distributions. Interlacing proton minibeams for homogeneous irradiation of the tumor has only minor benefits for the mean clonogenic cell survival compared to unidirectional minibeam irradiation modes. Enhanced mean cell survival, however, is obtained when a heterogeneous dose distribution within the tumor is permitted. The benefits hold true even for an elevated mean tumor dose, which is necessary to avoid cold spots within the tumor in concerns of a prescribed dose. The heterogeneous irradiation of the tumor allows for larger ctc distances. Thus, a high mean cell survival of up to 47% is maintained even close to the tumor edges for single fraction doses in the tumor of at least 10 Gy. Similar benefits would result for heavy ion minibeams with the advantage of smaller minibeams in deep tissue potentially offering even increased tissue sparing. The enhanced mean clonogenic cell survival through large ctc distances for interlaced pMBRT with heterogeneous tumor dose distribution results in optimum tissue sparing potential. The calculations show the largest enhancement of the mean cell survival in normal tissue for high-dose fractions. Thus, hypo-fractionation or even single dose fractions become possible for tumor irradiation. A widened therapeutic index at big cost reductions is offered by interlaced proton or heavy ion minibeam therapy.
质子微束放射治疗(pMBRT)是一种空间分割方法,使用毫米级的亚毫米中心到中心(ctc)距离的毫米级光束,通过减少正常组织的副作用来扩大治疗指数。来自两个相对或四个正交方向的交错微束被计算出来以最小化副作用。特别地,研究了应用于肿瘤的不均匀剂量分布,以评估靠近肿瘤周围的正常组织的最佳保护能力。在 25cm 厚的水模体中,在 10cm 深处考虑 5cm 厚的肿瘤。在所有情况下,都假设初始光束尺寸为σ = 0.2mm(标准差)。使用计算剂量分布上的线性二次模型来评估组织保护潜力,通过计算平均克隆形成细胞存活来评估。与单向微束照射模式相比,均匀照射肿瘤的质子微束交错仅对平均克隆形成细胞存活有较小的益处。然而,当允许肿瘤内存在不均匀的剂量分布时,会获得增强的平均细胞存活。即使对于升高的平均肿瘤剂量也是如此,这对于避免肿瘤内的冷点是必要的,因为考虑到规定剂量。肿瘤的不均匀照射允许更大的 ctc 距离。因此,即使对于肿瘤内的单次剂量至少为 10Gy 的肿瘤,也可以保持高达 47%的高平均细胞存活,甚至靠近肿瘤边缘。对于重离子微束,由于深部组织中的微束较小,可能会提供更高的组织保护,因此会产生类似的益处。通过交错 pMBRT 实现的大 ctc 距离和不均匀肿瘤剂量分布可提高平均克隆形成细胞存活,从而实现最佳的组织保护潜力。计算结果表明,对于高剂量分数,正常组织中的平均细胞存活提高最大。因此,对于肿瘤照射,可能会进行低分割或甚至单次剂量分割。交错质子或重离子微束治疗提供了更大的治疗指数和成本降低。