Suppr超能文献

质子微束放射治疗中微束产生的机械准直优化

Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy.

作者信息

Guardiola Consuelo, Peucelle Cécile, Prezado Yolanda

机构信息

IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France.

出版信息

Med Phys. 2017 Apr;44(4):1470-1478. doi: 10.1002/mp.12131. Epub 2017 Mar 11.

Abstract

PURPOSE

The dose tolerances of normal tissues continue to be the main barrier in radiation therapy. To lower it, a novel concept based on a combination of proton therapy and the use of arrays of parallel and thin beams has been recently proposed: proton minibeam radiation therapy (pMBRT). It allies the inherent advantages of protons with the remarkable normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. Due to multiple Coulomb scattering, the tumor receives a homogeneous dose distribution, while normal tissues in the beam path benefit from the spatial fractionation of the dose. This promising technique has already been implemented at a clinical center (Proton therapy Center of Orsay) by means of a first prototype of a multislit collimator. The main goal of this work was to optimize the minibeam generation by means of a mechanical collimation.

METHODS

Monte Carlo simulations (GATE V7.1) were used to evaluate the influence of the collimator material (brass, nickel, iron, tungsten), thickness, phantom-to-collimator distance (PCD), among other parameters, on the dose distributions. Maximization of the peak-to-valley dose ratios (PVDR) in normal tissues along with minimization of full width at half maximum, penumbras and neutron contamination were used as figures of merit. As a starting point for the optimization, the collimator employed in our previous works was used. It consisted in 400 μm × 2 cm slits with a center-to-center distance (c-t-c) of 3200 μm. As the main targets of pMBRT will be neurological cases, 100 MeV energy proton minibeams were considered. This energy range would allow treating tumors located at the center of the brain (the worst scenario).

RESULTS

Tungsten and brass are the most advantageous materials among those considered. A tungsten collimator provides the highest PVDR and lowest penumbra. Although the neutron yield generated in the tungsten collimator is 3 times higher than that of the other materials, the biologic neutron doses at the patient position amount to less than 0.05% and 0.7% of the peak and valley doses, respectively. In addition, shorter PCD than the one currently used (7 cm) leads to thinner beams (enhancing the dose-volume effects), accompanied, however, by an increase of neutron dose at the phantom surface. Finally, no gain in dose distributions is obtained by using nonparallel slits.

CONCLUSIONS

The collimator design and irradiation configuration have been optimized to minimize the angular spread, deliver the highest PVDR and the lowest valley possible in the normal tissues in pMBRT. We have also confirmed that even though the neutron yield generated in the multislit collimator is higher with respect to the one produced by the collimators used in conventional proton therapy, the increase of biological neutron dose in the patient will remain low (less than 1%).

摘要

目的

正常组织的剂量耐受性仍然是放射治疗中的主要障碍。为了降低这一障碍,最近提出了一种基于质子治疗与平行细束阵列相结合的新概念:质子微束放射治疗(pMBRT)。它将质子的固有优势与用亚毫米级空间分割束照射时观察到的显著的正常组织保留效果相结合。由于多次库仑散射,肿瘤接受均匀的剂量分布,而射线路径中的正常组织则受益于剂量的空间分割。这项有前景的技术已经通过多缝准直器的第一个原型在一个临床中心(奥赛质子治疗中心)得以实施。这项工作的主要目标是通过机械准直来优化微束的产生。

方法

使用蒙特卡罗模拟(GATE V7.1)来评估准直器材料(黄铜、镍、铁、钨)、厚度、模体到准直器距离(PCD)等参数对剂量分布的影响。将正常组织中峰谷剂量比(PVDR)的最大化以及半高宽、半值宽度和中子污染的最小化用作品质因数。作为优化的起点,使用了我们之前工作中所采用的准直器。它由中心距(c-t-c)为3200μm的400μm×2cm的狭缝组成。由于pMBRT的主要治疗对象将是神经科病例,因此考虑了100MeV能量的质子微束。这个能量范围将允许治疗位于脑中心的肿瘤(最糟糕的情况)。

结果

在考虑的材料中,钨和黄铜是最具优势的材料。钨准直器提供了最高的PVDR和最小的半值宽度。尽管钨准直器产生的中子产额比其他材料高3倍,但在患者位置处的生物中子剂量分别仅占峰剂量和谷剂量的不到0.05%和0.7%。此外,比当前使用的(7cm)更短的PCD会导致束更细(增强剂量体积效应),然而,这会伴随着模体表面中子剂量的增加。最后,使用非平行狭缝在剂量分布上没有得到改善。

结论

已对准直器设计和照射配置进行了优化,以在pMBRT中最小化角展宽,在正常组织中提供最高的PVDR和尽可能低的谷剂量。我们还证实,尽管多缝准直器产生的中子产额相对于传统质子治疗中使用的准直器产生的中子产额更高,但患者体内生物中子剂量的增加仍将很低(小于1%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验