Institute for Applied Physics and Metrology, Universität der Bundeswehr München, Neubiberg, Germany.
Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, Neuherberg, Germany; Department of Radiation Oncology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, München, Germany.
Int J Radiat Oncol Biol Phys. 2021 Jan 1;109(1):76-83. doi: 10.1016/j.ijrobp.2020.08.027. Epub 2020 Aug 14.
Proton minibeam radiation therapy, a spatial fractionation concept, widens the therapeutic window. By reducing normal tissue toxicities, it allows a temporally fractionated regime with high daily doses. However, an array shift between daily fractions can affect the tissue-sparing effect by decreasing the total peak-to-valley dose ratio. Therefore, combining temporal fractions with spatial fractionation raises questions about the impact of daily applied dose modulations, reirradiation accuracies, and total dose modulations.
Healthy mouse ear pinnae were irradiated with 4 daily fractions of 30 Gy mean dose, applying proton pencil minibeams (pMB) of Gaussian σ = 222 μm in 3 different schemes: a 16 pMB array with a center-to-center distance of 1.8 mm irradiated the same position in all sessions (FS1) or was shifted by 0.9 mm to never hit the previously irradiated tissue in each session (FS2), or a 64 pMB array with a center-to-center distance of 0.9 mm irradiated the same position in all sessions (FS3), resulting in the same total dose distribution as FS2. Reirradiation positioning and its accuracy were obtained from image guidance using the unique vessel structure of ears. Acute toxicities (swelling, erythema, and desquamation) were evaluated for 153 days after the first fraction. Late toxicities (fibrous tissue, inflammation) were analyzed on day 153.
Reirradiation of highly dose-modulated arrays at a positioning accuracy of 110 ± 52 μm induced the least severe acute and late toxicities. A shift of the same array in FS2 led to significantly inducted acute toxicities, a higher otitis score, and a slight increase in fibrous tissue. FS3 led to the strongest increase in acute and late toxicities.
The highest normal-tissue sparing is achieved after accurate reirradiation of a highly dose modulated pMB array, although high positioning accuracies are challenging in a clinical environment. Nevertheless, the same integral dose applied in highly dose-modulated fractions is superior to low daily dose-modulated fractions.
质子微束放射治疗是一种空间分割概念,它拓宽了治疗窗口。通过降低正常组织毒性,可以实现每日高剂量的时间分割治疗方案。然而,每日分割之间的阵列移位会通过降低总峰谷剂量比来影响组织保护效应。因此,将时间分割与空间分割相结合,引发了对每日应用剂量调制、再照射精度和总剂量调制的影响的问题。
健康小鼠耳郭用 4 个 30 Gy 平均剂量的每日分割进行照射,采用高斯 σ = 222 μm 的质子铅笔微束(pMB),在 3 种不同方案中应用:16 个 pMB 阵列,中心到中心距离为 1.8 mm,在所有治疗中照射相同的位置(FS1),或者在每个治疗中移动 0.9 mm 以从未照射过的组织上(FS2),或者 64 个 pMB 阵列,中心到中心距离为 0.9 mm,在所有治疗中照射相同的位置(FS3),导致与 FS2 相同的总剂量分布。再照射定位及其精度通过使用耳朵独特的血管结构的图像引导获得。在第一次分割后的 153 天内评估急性毒性(肿胀、红斑和脱屑)。在第 153 天分析迟发性毒性(纤维组织、炎症)。
在 110 ± 52 μm 的定位精度下对高度剂量调制的阵列进行再照射,可诱导最轻微的急性和迟发性毒性。在 FS2 中移动相同的阵列会导致明显的急性毒性、更高的耳炎评分和纤维组织略有增加。FS3 导致急性和迟发性毒性的增加最大。
尽管在临床环境中高精度定位具有挑战性,但在高度剂量调制的 pMB 阵列上进行准确的再照射可实现最高的正常组织保护。然而,应用于高度剂量调制的相同积分剂量优于低每日剂量调制的剂量。