Suppr超能文献

玉米生长阶段特异性干旱胁迫响应的全球转录组和加权基因共表达网络分析

Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize.

作者信息

Liu Songtao, Zenda Tinashe, Dong Anyi, Yang Yatong, Wang Nan, Duan Huijun

机构信息

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.

North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China.

出版信息

Front Genet. 2021 Jan 26;12:645443. doi: 10.3389/fgene.2021.645443. eCollection 2021.

Abstract

Drought is the major abiotic stress threatening maize ( L.) production globally. Despite recent scientific headway in deciphering maize drought stress responses, the overall picture of key genes, pathways, and co-expression networks regulating maize drought tolerance is still fragmented. Therefore, deciphering the molecular basis of maize drought tolerance remains pertinent. Here, through a comprehensive comparative leaf transcriptome analysis of drought-tolerant hybrid ND476 plants subjected to water-sufficient and water-deficit treatment conditions at flared (V12), tasseling (VT), the prophase of grain filling (R2), and the anaphase of grain filling (R4) crop growth stages, we report growth-stage-specific molecular mechanisms regulating maize drought stress responses. Based on the transcriptome analysis, a total of 3,451 differentially expressed genes (DEGs) were identified from the four experimental comparisons, with 2,403, 650, 397, and 313 DEGs observed at the V12, VT, R1, and R4 stages, respectively. Subsequently, 3,451 DEGs were divided into 12 modules by weighted gene co-expression network analysis (WGCNA), comprising 277 hub genes. Interestingly, the co-expressed genes that clustered into similar modules exhibited diverse expression tendencies and got annotated to different GO terms at different stages. MapMan analysis revealed that DEGs related to stress signal transduction, detoxification, transcription factor regulation, hormone signaling, and secondary metabolites biosynthesis were universal across the four growth stages. However, DEGs associated with photosynthesis and amino acid metabolism; protein degradation; transport; and RNA transcriptional regulation were uniquely enriched at the V12, VT, R2, and R4 stages, respectively. Our results affirmed that maize drought stress adaptation is a growth-stage-specific response process, and aid in clarifying the fundamental growth-stage-specific mechanisms regulating drought stress responses in maize. Moreover, genes and metabolic pathways identified here can serve as valuable genetic resources or selection targets for further functional validation experiments.

摘要

干旱是全球威胁玉米(Zea mays L.)生产的主要非生物胁迫。尽管最近在解析玉米干旱胁迫反应方面取得了科学进展,但调控玉米耐旱性的关键基因、途径和共表达网络的整体情况仍然支离破碎。因此,解析玉米耐旱性的分子基础仍然具有重要意义。在此,通过对耐旱杂交种ND476植株在大喇叭口期(V12)、抽雄期(VT)、灌浆前期(R2)和灌浆后期(R4)作物生长阶段进行充分供水和水分亏缺处理条件下的全面比较叶片转录组分析,我们报道了调控玉米干旱胁迫反应的生长阶段特异性分子机制。基于转录组分析,在四个实验比较中总共鉴定出3451个差异表达基因(DEG),在V12、VT、R2和R4阶段分别观察到2403、650、397和313个DEG。随后,通过加权基因共表达网络分析(WGCNA)将3451个DEG分为12个模块,包括277个枢纽基因。有趣的是,聚类到相似模块中的共表达基因在不同阶段表现出不同的表达趋势,并被注释到不同的基因本体(GO)术语。MapMan分析表明,与胁迫信号转导、解毒、转录因子调控、激素信号和次生代谢物生物合成相关的DEG在四个生长阶段普遍存在。然而,与光合作用和氨基酸代谢、蛋白质降解、转运以及RNA转录调控相关的DEG分别在V12、VT、R2和R4阶段独特富集。我们的结果证实,玉米干旱胁迫适应性是一个生长阶段特异性的反应过程,有助于阐明调控玉米干旱胁迫反应的基本生长阶段特异性机制。此外,这里鉴定出的基因和代谢途径可作为有价值的遗传资源或选择靶点,用于进一步的功能验证实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afb5/7870802/a9407699555f/fgene-12-645443-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验