Suppr超能文献

140吉赫兹共焦回旋放大器的相位测量

Phase Measurements of a 140-GHz Confocal Gyro-Amplifier.

作者信息

Rosenzweig Guy, Jawla Sudheer K, Picard Julian F, Shapiro Michael A, Temkin Richard J

机构信息

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Infrared Millim Terahertz Waves. 2021 Jan;42(1):29-39. doi: 10.1007/s10762-020-00751-w. Epub 2020 Oct 27.

Abstract

The phase stability of a 140GHz, 1kW pulsed gyro-amplifier system and the phase dependence on the cathode voltage were experimentally measured. To optimize the measurement precision, the amplifier was operated at 47 kV and 1 A, where the output power was ∼ 30W. The phase was determined to be stable both pulse-to-pulse and during each pulse, so far as the cathode voltage and electron beam current are constant. The phase variation with voltage was measured and found to be 130±30°/kV, in excellent agreement with simulations. The electron gun used in this device is non-adiabatic, resulting in a steep slope of the beam pitch factor with respect to cathode voltage. This was discovered to be the dominant factor in the phase dependence on voltage. The use of an adiabatic electron gun is predicted to yield a significantly smaller phase sensitivity to voltage, and thus a more phase-stable performance. To our knowledge, these are the first phase measurements reported for a gyro-amplifier operating at a frequency above W-band.

摘要

对一个140GHz、1kW的脉冲回旋管放大器系统的相位稳定性以及相位对阴极电压的依赖性进行了实验测量。为了优化测量精度,放大器在47 kV和1 A的条件下运行,此时输出功率约为30W。只要阴极电压和电子束电流保持恒定,就可以确定相位在脉冲之间和每个脉冲期间都是稳定的。测量了相位随电压的变化,发现其为130±30°/kV,与模拟结果非常吻合。该装置中使用的电子枪是非绝热的,导致束 pitch 因子相对于阴极电压具有陡峭的斜率。这被发现是相位对电压依赖性的主要因素。预计使用绝热电子枪将对电压产生明显更小的相位灵敏度,从而实现更稳定的相位性能。据我们所知,这些是首次报道的工作在W波段以上频率的回旋管放大器的相位测量结果。

相似文献

1
Phase Measurements of a 140-GHz Confocal Gyro-Amplifier.
J Infrared Millim Terahertz Waves. 2021 Jan;42(1):29-39. doi: 10.1007/s10762-020-00751-w. Epub 2020 Oct 27.
2
Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
IEEE Trans Electron Devices. 2009 May 1;56(5):818-827. doi: 10.1109/TED.2009.2015802.
3
Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Oct;45(10):2835-2840. doi: 10.1109/TPS.2017.2740619. Epub 2017 Oct 5.
4
Photonic-band-gap gyrotron amplifier with picosecond pulses.
Appl Phys Lett. 2017 Dec 4;111(23):233504. doi: 10.1063/1.5006348. Epub 2017 Dec 5.
5
Photonic-band-gap traveling-wave gyrotron amplifier.
Phys Rev Lett. 2013 Dec 6;111(23):235101. doi: 10.1103/PhysRevLett.111.235101.
6
High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.
Phys Rev Lett. 2003 Jun 27;90(25 Pt 1):258302. doi: 10.1103/PhysRevLett.90.258302. Epub 2003 Jun 26.
7
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2007 Feb;35(1):27-30. doi: 10.1109/TPS.2006.889295.
8
Second Harmonic 527-GHz Gyrotron for DNP-NMR: Design and Experimental Results.
IEEE Trans Electron Devices. 2020 Jan;67(1):328-334. doi: 10.1109/ted.2019.2953658. Epub 2019 Dec 10.
10
Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region.
Phys Rev Lett. 2017 Nov 3;119(18):184801. doi: 10.1103/PhysRevLett.119.184801. Epub 2017 Oct 31.

本文引用的文献

1
Photonic-band-gap gyrotron amplifier with picosecond pulses.
Appl Phys Lett. 2017 Dec 4;111(23):233504. doi: 10.1063/1.5006348. Epub 2017 Dec 5.
2
Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Oct;45(10):2835-2840. doi: 10.1109/TPS.2017.2740619. Epub 2017 Oct 5.
3
Theory of Linear and Nonlinear Gain in a Gyroamplifier using a Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Sep;45(9):2438-2449. doi: 10.1109/TPS.2017.2726683. Epub 2017 Aug 22.
4
Photonic-band-gap traveling-wave gyrotron amplifier.
Phys Rev Lett. 2013 Dec 6;111(23):235101. doi: 10.1103/PhysRevLett.111.235101.
5
A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.
J Magn Reson. 2012 Oct;223:170-9. doi: 10.1016/j.jmr.2012.07.008. Epub 2012 Jul 20.
6
Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.
Phys Rev Lett. 2010 Sep 24;105(13):135101. doi: 10.1103/PhysRevLett.105.135101. Epub 2010 Sep 20.
7
High power pulsed dynamic nuclear polarisation at 94 GHz.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5752-6. doi: 10.1039/c002251a. Epub 2010 Apr 28.
8
Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
IEEE Trans Electron Devices. 2009 May 1;56(5):818-827. doi: 10.1109/TED.2009.2015802.
9
Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments.
IEEE Trans Microw Theory Tech. 2005 Jun;53(6 I):1863-1869. doi: 10.1109/TMTT.2005.848097.
10
Phase and gain measurements in a distributed-loss cyclotron-resonance maser amplifier.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2B):036503. doi: 10.1103/PhysRevE.65.036503. Epub 2002 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验