Suppr超能文献

中文脊柱内固定手术患者内置固定装置失效风险预测:新型预测列线图的建立与评估。

Predicting the Failure Risk of Internal Fixation Devices in Chinese Patients Undergoing Spinal Internal Fixation Surgery: Development and Assessment of a New Predictive Nomogram.

机构信息

Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi 530021, China.

Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, China.

出版信息

Biomed Res Int. 2021 Jan 26;2021:8840107. doi: 10.1155/2021/8840107. eCollection 2021.

Abstract

The current study is aimed at developing and validating a nomogram of the risk of failure of internal fixation devices in Chinese patients undergoing spinal internal fixation. We collected data from a total of 1139 patients admitted for spinal internal fixation surgery at the First Affiliated Hospital of Guangxi Medical University from May 2012 to February 2019. Of these, 1050 patients were included in the spinal internal fixation group and 89 patients in the spinal internal fixation device failure group. Patients were divided into training and validation tests. The risk assessment of the failure of the spinal internal fixation device used 14 characteristics. In the training test, the feature selection of the failure model of the spinal internal fixation device was optimized using the least absolute shrinkage and selection operator (LASSO) regression model. Based on the characteristics selected in the LASSO regression model, multivariate logistic regression analysis was used for constructing the model. Identification, calibration, and clinical usefulness of predictive models were assessed using C-index, calibration curve, and decision curve analysis. A validation test was used to validate the constructed model. In the training test, the risk prediction nomogram included gender, age, presence or absence of scoliosis, and unilateral or bilateral fixation. The model demonstrated moderate predictive power with a C-index of 0.722 (95% confidence interval: 0.644-0.800) and the area under the curve (AUC) of 0.722. Decision curve analysis depicted that the failure risk nomogram was clinically useful when the probability threshold for internal fixation device failure was 3%. The C-index of the validation test was 0.761. This novel nomogram of failure risk for spinal instrumentation includes gender, age, presence or absence of scoliosis, and unilateral or bilateral fixation. It can be used for evaluating the risk of instrumentation failure in patients undergoing spinal instrumentation surgery.

摘要

本研究旨在开发和验证中国脊柱内固定患者内固定失败风险的列线图。我们收集了 2012 年 5 月至 2019 年 2 月期间广西医科大学第一附属医院行脊柱内固定手术的 1139 例患者的数据。其中,1050 例患者纳入脊柱内固定组,89 例患者纳入脊柱内固定失败组。患者分为训练和验证测试。脊柱内固定装置失败风险评估使用了 14 个特征。在训练测试中,使用最小绝对收缩和选择算子(LASSO)回归模型优化脊柱内固定装置失败模型的特征选择。基于 LASSO 回归模型中选择的特征,使用多变量逻辑回归分析构建模型。使用 C 指数、校准曲线和决策曲线分析评估预测模型的识别、校准和临床实用性。验证测试用于验证构建的模型。在训练测试中,风险预测列线图包括性别、年龄、是否存在脊柱侧凸以及单侧或双侧固定。该模型具有中等预测能力,C 指数为 0.722(95%置信区间:0.644-0.800),曲线下面积(AUC)为 0.722。决策曲线分析表明,当内固定装置失效概率阈值为 3%时,失效风险列线图具有临床实用性。验证测试的 C 指数为 0.761。这个新的脊柱内固定失败风险列线图包括性别、年龄、是否存在脊柱侧凸以及单侧或双侧固定。它可用于评估脊柱内固定手术患者内固定失败的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f2a/7857875/45c9ef3bf8d8/BMRI2021-8840107.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验