School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Aging (Albany NY). 2020 Jun 2;12(11):10317-10336. doi: 10.18632/aging.103259.
Develop a diabetic nephropathy incidence risk nomogram in a Chinese population with type 2 diabetes mellitus.
Predictors included systolic blood pressure, diastolic blood pressure, fasting blood glucose, glycosylated hemoglobin A1c, total triglycerides, serum creatinine, blood urea nitrogen and body mass index. The model displayed medium predictive power with a C-index of 0.744 and an area under curve of 0.744. Internal verification of C-index reached 0.737. The decision curve analysis showed the risk threshold was 20%. The value of net reclassification improvement and integrated discrimination improvement were 0.131, 0.05, and that the nomogram could be applied in clinical practice.
Diabetic nephropathy incidence risk nomogram incorporating 8 features is useful to predict diabetic nephropathy incidence risk in type 2 diabetes mellitus patients.
Questionnaires, physical examinations and biochemical tests were performed on 3489 T2DM patients in six communities in Shanghai. LASSO regression was used to optimize feature selection by running cyclic coordinate descent. Logistic regression analysis was applied to build a prediction model incorporating the selected features. The C-index, calibration plot, curve analysis, forest plot, net reclassification improvement, integrated discrimination improvement and internal validation were used to validate the discrimination, calibration and clinical usefulness of the model.
为中国 2 型糖尿病患者建立一个预测糖尿病肾病发病率的列线图。
纳入的预测因素包括收缩压、舒张压、空腹血糖、糖化血红蛋白 A1c、总三酰甘油、血清肌酐、血尿素氮和体重指数。该模型具有中等的预测能力,C 指数为 0.744,曲线下面积为 0.744。C 指数的内部验证达到 0.737。决策曲线分析表明风险阈值为 20%。净重新分类改善值和综合判别改善值分别为 0.131 和 0.05,表明该列线图可应用于临床实践。
纳入 8 个特征的糖尿病肾病发病风险列线图可用于预测 2 型糖尿病患者的糖尿病肾病发病风险。
对上海 6 个社区的 3489 例 2 型糖尿病患者进行问卷调查、体格检查和生化检测。使用 LASSO 回归通过循环坐标下降来优化特征选择。应用逻辑回归分析建立纳入选定特征的预测模型。使用 C 指数、校准图、曲线分析、森林图、净重新分类改善值、综合判别改善值和内部验证来验证模型的判别、校准和临床实用性。