Ribeiro-Oliveira J P, Ranal M A, Boselli M A
Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida João Naves de Ávila, 2121, 38400-902 Uberlândia, Minas Gerais, Brazil.
Instituto de Biologia, Universidade Federal de Uberlândia, Avenida João Naves de Ávila, 2121, 38400-902 Uberlândia, Minas Gerais, Brazil.
Plant Phenomics. 2020 Dec 6;2020:5196176. doi: 10.34133/2020/5196176. eCollection 2020.
We demonstrated that classical biophysical measurements of water dynamics on germinating diaspores (seeds and other dispersal units) can improve the understanding of the germination process in a simpler, safer, and newer way. This was done using diaspores of cultivated species as a biological model. To calculate the water dynamics measurements (weighted mass, initial diffusion coefficient, velocity, and acceleration), we used the mass of diaspores recorded over germination time. Weighted mass of germinating diaspores has a similar pattern, independent of the physiological quality, species, or genetic improvement degree. However, the initial diffusion coefficient (related to imbibition ), velocity, and acceleration (related to the whole germination metabolism) are influenced by species characters, highlighting the degree of genetic improvement and physiological quality. Changes in the inflection of velocity curves demonstrated each phase of germination . There is no pattern related to the number of these phases, which could range between three and six. Regression models can demonstrate initial velocity and velocity increments for each phase, giving an idea of the management of germinative metabolism. Our finds demonstrated that germination is a polyphasic process with a species-specific pattern but still set by the degree of genetic improvement and (or) physiological quality of diaspores. Among the biophysical measurements, velocity has the greatest potential to define the germination metabolism.
我们证明,对萌发的传播体(种子及其他传播单位)进行水动力学的经典生物物理测量,能够以一种更简单、更安全且更新颖的方式增进对萌发过程的理解。这是通过使用栽培物种的传播体作为生物模型来实现的。为了计算水动力学测量值(加权质量、初始扩散系数、速度和加速度),我们使用了在萌发时间内记录的传播体质量。萌发传播体的加权质量具有相似的模式,与生理质量、物种或遗传改良程度无关。然而,初始扩散系数(与吸胀有关)、速度和加速度(与整个萌发代谢有关)受物种特性影响,突出了遗传改良程度和生理质量。速度曲线拐点的变化表明了萌发的各个阶段。这些阶段的数量没有固定模式,可能在三到六个之间。回归模型可以展示每个阶段的初始速度和速度增量,从而让人了解萌发代谢的调控情况。我们的研究结果表明,萌发是一个多阶段过程,具有物种特异性模式,但仍由传播体的遗传改良程度和(或)生理质量决定。在生物物理测量中,速度在界定萌发代谢方面具有最大潜力。