Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
Cardiovasc Res. 2022 Jan 7;118(1):212-225. doi: 10.1093/cvr/cvab043.
The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, β-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery.
In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation), and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro.
Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure.
在糖尿病前临床模型中,通过糖部分β-N-乙酰氨基葡萄糖(O-GlcNAc)驱动的心肌蛋白的酶促修饰增加,暗示蛋白质 O-GlcNAc 修饰在糖尿病诱导的心力衰竭中起作用。我们的目的是在存在和不存在糖尿病的情况下,利用心脏靶向重组腺相关病毒载体-6(rAAV6)介导的基因传递,专门研究该过程的两个调节酶对心脏表型的心脏操作。
在人类心肌中,与非糖尿病患者相比,糖尿病患者的总蛋白 O-GlcNAc 修饰升高,并与左心室(LV)功能障碍相关。rAAV6 传递的 O-GlcNAc 转移酶(rAAV6-OGT,促进蛋白 O-GlcNAcylation)、O-GlcNAcase(rAAV6-OGA,促进去-O-GlcNAcylation)和空载体(null)对非糖尿病和糖尿病小鼠的影响进行了测定。在非糖尿病小鼠中,rAAV6-OGT 足以损害 LV 舒张功能并诱导适应性心脏重塑,包括心脏纤维化和增加 Myh-7 和 Nppa 促肥厚基因表达,再现了糖尿病心肌病的特征。相比之下,rAAV6-OGA(而非 rAAV6-OGT)挽救了糖尿病小鼠的 LV 舒张功能和不良心脏重塑。分子研究表明,PI3K(p110α)-Akt 信号转导受损可能是 rAAV6-OGT 在体内产生不良后果的潜在机制。相比之下,rAAV6-OGA 在体内保留了糖尿病小鼠心肌中的 PI3K(p110α)-Akt 信号转导,并防止了体外高葡萄糖诱导的人心肌细胞线粒体呼吸受损。
在人类糖尿病心肌中明显存在适应性蛋白 O-GlcNAc 修饰,是糖尿病心脏表型的关键调节因子。选择性靶向心脏蛋白 O-GlcNAcylation 以恢复生理 O-GlcNAc 平衡可能代表一种治疗糖尿病诱导性心力衰竭的新方法。