Laboratorio de Radiobiología, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, 29010, Málaga, Spain.
Servicios Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, Bulevar Louis Pasteur 33, 29010, Málaga, Spain.
Appl Microbiol Biotechnol. 2021 Mar;105(5):1965-1977. doi: 10.1007/s00253-021-11137-w. Epub 2021 Feb 12.
The aim of this study is to select a cisplatin-resistant Saccharomyces cerevisiae strain to look for new molecular markers of resistance and the identification of mechanisms/interactions involved. A resistant strain was obtained after 80 days of cisplatin exposure. Then, total protein extraction, purification, and identification were carried out, in wild-type (wt) and resistant strains, by tandem mass spectrometry using a "nano HPLC-ESI-MS/MS" ion trap system. The increase in the exponentially modified protein abundance index (emPAI) (resistant vs wt strains) was calculated to study the increase in protein expression. "Genemania" software ( http://www.Genemania.org/ ) was used to compare the effects, functions, and protein interactions. KEGG tool was used for metabolic pathway analysis. Data are available via ProteomeXchange with identifier PXD020665. The cisplatin-resistant strain showed 2.5 times more resistance than the wt strain for the inhibitory dose 50% (ID50) value (224 μg/ml vs 89.68 μg/ml) and 2.78 times more resistant for the inhibitory dose 90% (ID90) value (735.2 μg/ml vs 264.04 μg/ml). Multiple deregulated proteins were found in the glutathione and carbon metabolism, oxidative phosphorylation, proteasome, glycolysis and gluconeogenesis, glyoxylate metabolism, fatty acid degradation pathway, citric acid cycle, and ribosome. The most overexpressed proteins in the cisplatin-resistant strain were related to growth and metabolism (QCR2, QCR1, ALDH4, ATPB, ATPA, ATPG, and PCKA), cell structure (SCW10), and thermal shock (HSP26). The results suggest that these proteins could be involved in cisplatin resistance. The resistance acquisition process is complex and involves the activation of multiple mechanisms that interact together. KEY POINTS: • Identification of new proteins/genes related to cisplatin resistance • Increased expression of QCR2/QCR1/ALDH4/ATPB/ATPA/SCW10/HSP26/ATPG and PCKA proteins • Multiple molecular mechanisms that interact together are involved in resistance.
本研究旨在选择一株耐顺铂的酿酒酵母菌株,寻找新的耐药分子标志物,并鉴定相关的机制/相互作用。经过 80 天的顺铂暴露,获得了一株耐药菌株。然后,通过串联质谱法(使用“nano HPLC-ESI-MS/MS”离子阱系统)对野生型(wt)和耐药菌株进行总蛋白提取、纯化和鉴定。通过计算指数修饰蛋白丰度指数(emPAI)的增加(耐药株与野生型株相比)来研究蛋白表达的增加。使用“Genemania”软件(http://www.Genemania.org/)比较效应、功能和蛋白相互作用。KEGG 工具用于代谢途径分析。数据可通过 ProteomeXchange 获得,标识符为 PXD020665。与野生型菌株相比,耐顺铂菌株的抑制剂量 50%(ID50)值(224μg/ml 对 89.68μg/ml)和抑制剂量 90%(ID90)值(735.2μg/ml 对 264.04μg/ml)的耐药性分别提高了 2.5 倍和 2.78 倍。在谷胱甘肽和碳代谢、氧化磷酸化、蛋白酶体、糖酵解和糖异生、乙醛酸代谢、脂肪酸降解途径、柠檬酸循环和核糖体中发现了多种调节蛋白。在耐顺铂菌株中过度表达的蛋白与生长和代谢(QCR2、QCR1、ALDH4、ATPB、ATPA、ATPG 和 PCKA)、细胞结构(SCW10)和热休克(HSP26)有关。结果表明,这些蛋白可能与顺铂耐药有关。耐药获得过程复杂,涉及多种机制的激活,这些机制相互作用。关键点:•鉴定与顺铂耐药相关的新蛋白/基因•QCR2/QCR1/ALDH4/ATPB/ATPA/SCW10/HSP26/ATPG 和 PCKA 蛋白表达增加•涉及相互作用的多种分子机制参与耐药性。