Mueller Stefan, Lüttig Julian, Brenneis Luisa, Oron Dan, Brixner Tobias
Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.
ACS Nano. 2021 Mar 23;15(3):4647-4657. doi: 10.1021/acsnano.0c09080. Epub 2021 Feb 12.
Correlations between excitons, that is, electron-hole pairs, have a great impact on the optoelectronic properties of semiconductor quantum dots and thus are relevant for applications such as lasers and photovoltaics. Upon multiphoton excitation, these correlations lead to the formation of multiexciton states. It is challenging to observe these states spectroscopically, especially higher multiexciton states, because of their short lifetimes and nonradiative decay. Moreover, solvent contributions in experiments with coherent signal detection may complicate the analysis. Here we employ multiple-quantum two-dimensional (2D) fluorescence spectroscopy on colloidal CdSeS/ZnS alloyed core/shell quantum dots. We selectively map the electronic structure of multiexcitons and their correlations by using two- and three-quantum 2D spectroscopy, conducted in a simultaneous measurement. Our experiments reveal the characteristics of biexcitons and triexcitons such as transition dipole moments, binding energies, and correlated transition energy fluctuations. We determine the binding energies of the first six biexciton states by simulating the two-quantum 2D spectrum. By analyzing the line shape of the three-quantum 2D spectrum, we find strong correlations between biexciton and triexciton states. Our method contributes to a more comprehensive understanding of multiexcitonic species in quantum dots and other semiconductor nanostructures.
激子(即电子 - 空穴对)之间的相关性对半导体量子点的光电特性有很大影响,因此与激光和光伏等应用相关。在多光子激发下,这些相关性会导致多激子态的形成。由于其寿命短和非辐射衰变,通过光谱学方法观察这些态具有挑战性,尤其是更高的多激子态。此外,在相干信号检测实验中溶剂的影响可能会使分析变得复杂。在这里,我们对胶体CdSeS/ZnS合金核/壳量子点采用多量子二维(2D)荧光光谱法。我们通过在同时测量中进行双量子和三量子二维光谱法,选择性地绘制多激子的电子结构及其相关性。我们的实验揭示了双激子和三激子的特性,如跃迁偶极矩、结合能和相关的跃迁能量波动。我们通过模拟双量子二维光谱确定了前六个双激子态的结合能。通过分析三量子二维光谱的线形,我们发现双激子态和三激子态之间存在强相关性。我们的方法有助于更全面地理解量子点和其他半导体纳米结构中的多激子物种。