Suppr超能文献

Multiview Multi-Instance Multilabel Active Learning.

作者信息

Yu Guoxian, Xing Yuying, Wang Jun, Domeniconi Carlotta, Zhang Xiangliang

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4311-4321. doi: 10.1109/TNNLS.2021.3056436. Epub 2022 Aug 31.

Abstract

Multiview multi-instance multilabel learning (M3L) is a framework for modeling complex objects. In this framework, each object (or bag) contains one or more instances, is represented with different feature views, and simultaneously annotated with a set of nonexclusive semantic labels. Given the multiplicity of the studied objects, traditional M3L methods generally demand a large number of labeled bags to train a predictive model to annotate bags (or instances) with semantic labels. However, annotating sufficient bags is very expensive and often impractical. In this article, we present an active learning-based M3L approach (M3AL) to reduce the labeling costs of bags and to improve the performance as much as possible. M3AL first adapts the multiview self-representation learning to evacuate the shared and individual information of bags and to learn the shared/individual similarities between bags across/within views. Next, to avoid scrutinizing all the possible labels, M3AL introduces a new query strategy that leverages the shared and individual information, and the diverse instance distribution of bags across views, to select the most informative bag-label pair for the query. Experimental studies on benchmark data sets show that M3AL can significantly reduce the query costs while achieving a better performance than other related competitive methods at the same cost.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验