Suppr超能文献

MetNet:一种重建和比较代谢网络的两级方法。

MetNet: A two-level approach to reconstructing and comparing metabolic networks.

机构信息

Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Venice, Italy.

Mathematics and Computer Science Department, University of the Balearic Islands, Palma, Spain.

出版信息

PLoS One. 2021 Feb 12;16(2):e0246962. doi: 10.1371/journal.pone.0246962. eCollection 2021.

Abstract

Metabolic pathway comparison and interaction between different species can detect important information for drug engineering and medical science. In the literature, proposals for reconstructing and comparing metabolic networks present two main problems: network reconstruction requires usually human intervention to integrate information from different sources and, in metabolic comparison, the size of the networks leads to a challenging computational problem. We propose to automatically reconstruct a metabolic network on the basis of KEGG database information. Our proposal relies on a two-level representation of the huge metabolic network: the first level is graph-based and depicts pathways as nodes and relations between pathways as edges; the second level represents each metabolic pathway in terms of its reactions content. The two-level representation complies with the KEGG database, which decomposes the metabolism of all the different organisms into "reference" pathways in a standardised way. On the basis of this two-level representation, we introduce some similarity measures for both levels. They allow for both a local comparison, pathway by pathway, and a global comparison of the entire metabolism. We developed a tool, MetNet, that implements the proposed methodology. MetNet makes it possible to automatically reconstruct the metabolic network of two organisms selected in KEGG and to compare their two networks both quantitatively and visually. We validate our methodology by presenting some experiments performed with MetNet.

摘要

代谢途径的比较和不同物种之间的相互作用可以为药物工程和医学科学检测到重要信息。在文献中,重建和比较代谢网络的建议存在两个主要问题:网络重建通常需要人工干预来整合来自不同来源的信息,而在代谢比较中,网络的大小导致了具有挑战性的计算问题。我们建议基于 KEGG 数据库信息自动重建代谢网络。我们的建议依赖于对庞大代谢网络的两级表示:第一级基于图表示,将途径表示为节点,将途径之间的关系表示为边;第二级表示每个代谢途径的反应内容。两级表示符合 KEGG 数据库,该数据库以标准化的方式将所有不同生物体的代谢分解为“参考”途径。基于这种两级表示,我们引入了一些用于这两个层次的相似性度量。它们允许进行局部比较(途径与途径)和整个代谢的全局比较。我们开发了一个名为 MetNet 的工具,它实现了所提出的方法。MetNet 使得自动重建 KEGG 中选择的两个生物体的代谢网络并对它们的两个网络进行定量和可视化比较成为可能。我们通过介绍使用 MetNet 进行的一些实验来验证我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b2/7880445/3d37681e054d/pone.0246962.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验