Suppr超能文献

简化代谢网络重建以促进通量平衡分析工具的理解和发展。

A simplified metabolic network reconstruction to promote understanding and development of flux balance analysis tools.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA.

出版信息

Comput Biol Med. 2019 Feb;105:64-71. doi: 10.1016/j.compbiomed.2018.12.010. Epub 2018 Dec 17.

Abstract

GEnome-scale Network REconstructions (GENREs) mathematically describe metabolic reactions of an organism or a specific cell type. GENREs can be used with a number of constraint-based reconstruction and analysis (COBRA) methods to make computational predictions on how a system changes in different environments. We created a simplified GENRE (referred to as iSIM) that captures central energy metabolism with nine metabolic reactions to illustrate the use of and promote the understanding of GENREs and constraint-based methods. We demonstrate the simulation of single and double gene deletions, flux variability analysis (FVA), and test a number of metabolic tasks with the GENRE. Code to perform these analyses is provided in Python, R, and MATLAB. Finally, with iSIM as a guide, we demonstrate how inaccuracies in GENREs can limit their use in the interrogation of energy metabolism.

摘要

基因组尺度网络重建(GENRE)从数学角度描述了生物体或特定细胞类型的代谢反应。GENRE 可以与许多基于约束的重建和分析(COBRA)方法一起使用,以便在不同环境下对系统的变化进行计算预测。我们创建了一个简化的 GENRE(简称 iSIM),它包含九个代谢反应,以捕捉中心能量代谢,以说明 GENRE 和基于约束的方法的使用和促进对它们的理解。我们演示了单基因和双基因缺失的模拟、通量变异性分析(FVA),并使用 GENRE 测试了许多代谢任务。执行这些分析的代码提供了 Python、R 和 MATLAB 版本。最后,以 iSIM 为指导,我们演示了 GENRE 的不准确性如何限制它们在能量代谢研究中的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验