Azadi Mohsen, Popov George A, Lu Zhipeng, Eskenazi Andy G, Bang Avery Ji Won, Campbell Matthew F, Hu Howard, Bargatin Igor
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Vagelos Integrated Program in Energy Research, University of Pennsylvania, Philadelphia, PA 19104, USA.
Sci Adv. 2021 Feb 12;7(7). doi: 10.1126/sciadv.abe1127. Print 2021 Feb.
We report light-driven levitation of macroscopic polymer films with nanostructured surface as candidates for long-duration near-space flight. We levitated centimeter-scale disks made of commercial 0.5-micron-thick mylar film coated with carbon nanotubes on one side. When illuminated with light intensity comparable to natural sunlight, the polymer disk heats up and interacts with incident gas molecules differently on the top and bottom sides, producing a net recoil force. We observed the levitation of 6-mm-diameter disks in a vacuum chamber at pressures between 10 and 30 Pa. Moreover, we controlled the flight of the disks using a shaped light field that optically trapped the levitating disks. Our experimentally validated theoretical model predicts that the lift forces can be many times the weight of the films, allowing payloads of up to 10 milligrams for sunlight-powered low-cost microflyers at altitudes of 50 to 100 km.
我们报告了具有纳米结构表面的宏观聚合物薄膜的光驱动悬浮,作为长时间近太空飞行的候选方案。我们使由商业用0.5微米厚的聚酯薄膜制成的厘米级圆盘悬浮,该薄膜的一侧涂有碳纳米管。当用与自然阳光相当的光强度照射时,聚合物圆盘升温,并在顶部和底部与入射气体分子产生不同的相互作用,从而产生净反冲力。我们在压力为10至30帕的真空室中观察到直径6毫米的圆盘悬浮。此外,我们使用对悬浮圆盘进行光学捕获的成形光场来控制圆盘的飞行。我们通过实验验证的理论模型预测,升力可以是薄膜重量的许多倍,这使得在50至100公里高度的由阳光驱动的低成本微型飞行器能够搭载高达10毫克的有效载荷。