Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Chem Rev. 2022 Feb 9;122(3):3122-3179. doi: 10.1021/acs.chemrev.1c00626. Epub 2021 Nov 19.
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
光学操控的进展刺激了广泛领域的显著进步,包括材料科学、机器人技术、医疗工程和纳米技术。这篇综述重点介绍了一类新兴的光学操控技术,称为热介导光学操控。与传统的依赖于聚焦激光束捕获物体的光镊相比,热介导光学操控技术利用可定制的光热物质相互作用和丰富的质量输运动力学,实现了对各种成分、形状和大小的物质的多功能控制。除了传统的夹持外,还展示了更多独特的操控模式,包括光热拉伸、推动、旋转、游动、振荡和行走,使用简单的低功率光学元件增强了功能。我们首先介绍了热介导光学操控中涉及的基本物理知识,重点介绍了各种操控技术的主要工作机制。接下来,我们根据不同的工作机制对热介导光学操控技术进行分类,并讨论了每种技术的工作模式、能力和应用。最后,我们对这一快速发展的热介导光学操控领域的当前挑战和未来机遇进行了展望。