Suppr超能文献

热介导光学操控。

Heat-Mediated Optical Manipulation.

机构信息

Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

Chem Rev. 2022 Feb 9;122(3):3122-3179. doi: 10.1021/acs.chemrev.1c00626. Epub 2021 Nov 19.

Abstract

Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.

摘要

光学操控的进展刺激了广泛领域的显著进步,包括材料科学、机器人技术、医疗工程和纳米技术。这篇综述重点介绍了一类新兴的光学操控技术,称为热介导光学操控。与传统的依赖于聚焦激光束捕获物体的光镊相比,热介导光学操控技术利用可定制的光热物质相互作用和丰富的质量输运动力学,实现了对各种成分、形状和大小的物质的多功能控制。除了传统的夹持外,还展示了更多独特的操控模式,包括光热拉伸、推动、旋转、游动、振荡和行走,使用简单的低功率光学元件增强了功能。我们首先介绍了热介导光学操控中涉及的基本物理知识,重点介绍了各种操控技术的主要工作机制。接下来,我们根据不同的工作机制对热介导光学操控技术进行分类,并讨论了每种技术的工作模式、能力和应用。最后,我们对这一快速发展的热介导光学操控领域的当前挑战和未来机遇进行了展望。

相似文献

1
Heat-Mediated Optical Manipulation.
Chem Rev. 2022 Feb 9;122(3):3122-3179. doi: 10.1021/acs.chemrev.1c00626. Epub 2021 Nov 19.
2
Optothermal Manipulations of Colloidal Particles and Living Cells.
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
3
Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells.
ACS Nano. 2022 Jul 26;16(7):10878-10889. doi: 10.1021/acsnano.2c03111. Epub 2022 Jul 11.
4
Optical Manipulation Heats up: Present and Future of Optothermal Manipulation.
ACS Nano. 2023 Apr 25;17(8):7051-7063. doi: 10.1021/acsnano.3c00536. Epub 2023 Apr 6.
5
Multimodal Optothermal Manipulations along Various Surfaces.
ACS Nano. 2023 May 23;17(10):9280-9289. doi: 10.1021/acsnano.3c00583. Epub 2023 Apr 5.
6
Opto-Thermophoretic Tweezers and Assembly.
J Micro Nanomanuf. 2018 Dec;6(4):0408011-4080110. doi: 10.1115/1.4041615. Epub 2018 Oct 18.
7
A revolution in optical manipulation.
Nature. 2003 Aug 14;424(6950):810-6. doi: 10.1038/nature01935.
8
Optothermal rotation of micro-/nano-objects.
Chem Commun (Camb). 2023 Feb 21;59(16):2208-2221. doi: 10.1039/d2cc06955e.
9
Optical manipulation and assembly of micro/nanoscale objects on solid substrates.
iScience. 2022 Mar 6;25(4):104035. doi: 10.1016/j.isci.2022.104035. eCollection 2022 Apr 15.
10
Laser trapping of colloidal metal nanoparticles.
ACS Nano. 2015;9(4):3453-69. doi: 10.1021/acsnano.5b00286. Epub 2015 Apr 1.

引用本文的文献

1
Optically-driven organic nano-step actuator for reconfigurable photonic circuits.
Nat Commun. 2025 Sep 2;16(1):8213. doi: 10.1038/s41467-025-63521-z.
2
Light-driven lattice soft microrobot with multimodal locomotion.
Nat Commun. 2025 Aug 28;16(1):8059. doi: 10.1038/s41467-025-62676-z.
3
Harnessing Dye-Induced Local Heating in Lipid Membranes: A Path to Near-Infrared Light-Modulated Artificial Synaptic Vesicles.
ACS Nano. 2025 Aug 12;19(31):28768-28783. doi: 10.1021/acsnano.5c08482. Epub 2025 Jul 27.
4
Long-Distance Autonomous Navigation of Optical Microrobotic Swarms in Complex Environments.
Adv Intell Syst. 2024 Dec;6(12). doi: 10.1002/aisy.202400409. Epub 2024 Sep 19.
5
Optically-Directed Bubble Printing of MXenes on Flexible Substrates toward MXene-Enabled Wearable Electronics and Strain Sensors.
Nano Lett. 2025 May 7;25(18):7258-7265. doi: 10.1021/acs.nanolett.4c06355. Epub 2025 Apr 16.
6
1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses.
Small Sci. 2023 Aug 17;3(9):2300100. doi: 10.1002/smsc.202300100. eCollection 2023 Sep.
7
μSonic-hand: Biomedical micromanipulation driven by acoustic gas-liquid-solid interactions.
Sci Adv. 2025 Mar 28;11(13):eads8167. doi: 10.1126/sciadv.ads8167.
8
Optical sorting: past, present and future.
Light Sci Appl. 2025 Feb 27;14(1):103. doi: 10.1038/s41377-024-01734-5.
9
Photopyroelectric tweezers for versatile manipulation.
Innovation (Camb). 2024 Dec 12;6(1):100742. doi: 10.1016/j.xinn.2024.100742. eCollection 2025 Jan 6.
10
High-Performance MXene Hydrogel for Self-Propelled Marangoni Swimmers and Water-Enabled Electricity Generator.
Adv Sci (Weinh). 2025 Jan;12(2):e2408161. doi: 10.1002/advs.202408161. Epub 2024 Nov 18.

本文引用的文献

1
Opto-Thermoelectric Tweezers: Principles and Applications.
Front Phys. 2020;8. doi: 10.3389/fphy.2020.580014. Epub 2020 Oct 6.
2
Opto-Thermophoretic Tweezers and Assembly.
J Micro Nanomanuf. 2018 Dec;6(4):0408011-4080110. doi: 10.1115/1.4041615. Epub 2018 Oct 18.
3
Atomistic modeling and rational design of optothermal tweezers for targeted applications.
Nano Res. 2021 Jan;14(1):295-303. doi: 10.1007/s12274-020-3087-z. Epub 2020 Oct 1.
4
Surfactant-Controlled Photothermal Assembly of Nanoparticles and Microparticles for Rapid Concentration Measurement of Microbes.
ACS Appl Bio Mater. 2019 Apr 15;2(4):1561-1568. doi: 10.1021/acsabm.8b00838. Epub 2019 Apr 1.
5
Optical tweezers in single-molecule biophysics.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00021-6. Epub 2021 Mar 25.
6
Actuation of Janus Emulsion Droplets via Optothermally Induced Marangoni Forces.
Phys Rev Lett. 2021 Oct 1;127(14):144503. doi: 10.1103/PhysRevLett.127.144503.
7
Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect.
ACS Nano. 2021 Oct 26;15(10):16357-16367. doi: 10.1021/acsnano.1c05658. Epub 2021 Sep 21.
8
Decoding Optical Data with Machine Learning.
Laser Photon Rev. 2021 Feb;15(2). doi: 10.1002/lpor.202000422. Epub 2020 Dec 23.
9
Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications.
Adv Opt Mater. 2021 Jul 5;9(13). doi: 10.1002/adom.202100050. Epub 2021 Apr 17.
10
Optothermally Assembled Nanostructures.
Acc Mater Res. 2021 May 28;2(5):352-363. doi: 10.1021/accountsmr.1c00033. Epub 2021 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验