Suppr超能文献

用于高效钙钛矿太阳能电池的互穿界面,具有高运行稳定性和机械鲁棒性。

Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness.

作者信息

Dong Qingshun, Zhu Chao, Chen Min, Jiang Chen, Guo Jingya, Feng Yulin, Dai Zhenghong, Yadavalli Srinivas K, Hu Mingyu, Cao Xun, Li Yuqian, Huang Yizhong, Liu Zheng, Shi Yantao, Wang Liduo, Padture Nitin P, Zhou Yuanyuan

机构信息

State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

School of Engineering, Brown University, Providence, 02912, RI, USA.

出版信息

Nat Commun. 2021 Feb 12;12(1):973. doi: 10.1038/s41467-021-21292-3.

Abstract

The perovskite solar cell has emerged rapidly in the field of photovoltaics as it combines the merits of low cost, high efficiency, and excellent mechanical flexibility for versatile applications. However, there are significant concerns regarding its operational stability and mechanical robustness. Most of the previously reported approaches to address these concerns entail separate engineering of perovskite and charge-transporting layers. Herein we present a holistic design of perovskite and charge-transporting layers by synthesizing an interpenetrating perovskite/electron-transporting-layer interface. This interface is reaction-formed between a tin dioxide layer containing excess organic halide and a perovskite layer containing excess lead halide. Perovskite solar cells with such interfaces deliver efficiencies up to 22.2% and 20.1% for rigid and flexible versions, respectively. Long-term (1000 h) operational stability is demonstrated and the flexible devices show high endurance against mechanical-bending (2500 cycles) fatigue. Mechanistic insights into the relationship between the interpenetrating interface structure and performance enhancement are provided based on comprehensive, advanced, microscopic characterizations. This study highlights interface integrity as an important factor for designing efficient, operationally-stable, and mechanically-robust solar cells.

摘要

钙钛矿太阳能电池在光伏领域迅速崛起,因为它兼具低成本、高效率以及出色的机械柔韧性等优点,可用于多种用途。然而,其运行稳定性和机械坚固性仍存在重大问题。此前报道的解决这些问题的大多数方法都需要对钙钛矿层和电荷传输层进行单独设计。在此,我们通过合成互穿的钙钛矿/电子传输层界面,提出了一种钙钛矿层和电荷传输层的整体设计方法。该界面是在含有过量有机卤化物的二氧化锡层和含有过量卤化铅的钙钛矿层之间通过反应形成的。具有这种界面的钙钛矿太阳能电池,刚性和柔性版本的效率分别高达22.2%和20.1%。证明了其长期(1000小时)运行稳定性,并且柔性器件对机械弯曲(2500次循环)疲劳表现出高耐受性。基于全面、先进的微观表征,对互穿界面结构与性能增强之间的关系提供了机理见解。这项研究强调了界面完整性是设计高效、运行稳定和机械坚固的太阳能电池的一个重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d9/7881119/e0492a9c1146/41467_2021_21292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验