Suppr超能文献

钙钛矿太阳能电池倒平面结构的最新进展。

Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.

机构信息

Department of Material Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States.

Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, P. R. China.

出版信息

Acc Chem Res. 2016 Jan 19;49(1):155-65. doi: 10.1021/acs.accounts.5b00404. Epub 2015 Dec 22.

Abstract

Inorganic-organic hybrid perovskite solar cells research could be traced back to 2009, and initially showed 3.8% efficiency. After 6 years of efforts, the efficiency has been pushed to 20.1%. The pace of development was much faster than that of any type of solar cell technology. In addition to high efficiency, the device fabrication is a low-cost solution process. Due to these advantages, a large number of scientists have been immersed into this promising area. In the past 6 years, much of the research on perovskite solar cells has been focused on planar and mesoporous device structures employing an n-type TiO2 layer as the bottom electron transport layer. These architectures have achieved champion device efficiencies. However, they still possess unwanted features. Mesoporous structures require a high temperature (>450 °C) sintering process for the TiO2 scaffold, which will increase the cost and also not be compatible with flexible substrates. While the planar structures based on TiO2 (regular structure) usually suffer from a large degree of J-V hysteresis. Recently, another emerging structure, referred to as an "inverted" planar device structure (i.e., p-i-n), uses p-type and n-type materials as bottom and top charge transport layers, respectively. This structure derived from organic solar cells, and the charge transport layers used in organic photovoltaics were successfully transferred into perovskite solar cells. The p-i-n structure of perovskite solar cells has shown efficiencies as high as 18%, lower temperature processing, flexibility, and, furthermore, negligible J-V hysteresis effects. In this Account, we will provide a comprehensive comparison of the mesoporous and planar structures, and also the regular and inverted of planar structures. Later, we will focus the discussion on the development of the inverted planar structure of perovskite solar cells, including film growth, band alignment, stability, and hysteresis. In the film growth part, several methods for obtaining high quality perovskite films are reviewed. In the interface engineering parts, the effect of hole transport layer on subsequent perovskite film growth and their interface band alignment, and also the effect of electron transport layers on charge transport and interface contact will be discussed. As concerns stability, the role of charge transport layers especially the top electron transport layer in the devices stability will be concluded. In the hysteresis part, possible reasons for hysteresis free in inverted planar structure are provided. At the end of this Account, future development and possible solutions to the remaining challenges facing the commercialization of perovskite solar cells are discussed.

摘要

无机-有机杂化钙钛矿太阳能电池的研究可以追溯到 2009 年,最初的效率为 3.8%。经过 6 年的努力,效率已提高到 20.1%。其发展速度远远超过任何类型的太阳能电池技术。除了高效率之外,该器件的制造还采用了低成本的溶液处理工艺。由于这些优势,大量的科学家已经投身于这个有前途的领域。在过去的 6 年中,钙钛矿太阳能电池的大部分研究都集中在平面和介孔器件结构上,采用 n 型 TiO2 层作为底部电子传输层。这些结构已经实现了冠军器件效率。然而,它们仍然存在一些不理想的特性。介孔结构需要 TiO2 支架的高温(>450°C)烧结工艺,这将增加成本,并且与柔性衬底不兼容。而基于 TiO2 的平面结构(常规结构)通常会出现较大程度的 J-V 滞后。最近,另一种新兴结构,称为“倒置”平面器件结构(即 p-i-n),分别采用 p 型和 n 型材料作为底部和顶部电荷传输层。这种结构源自有机太阳能电池,并且有机光伏中使用的电荷传输层已成功地转移到钙钛矿太阳能电池中。钙钛矿太阳能电池的 p-i-n 结构已显示出高达 18%的效率、较低的温度处理、灵活性,并且几乎没有 J-V 滞后效应。在本综述中,我们将对介孔和平面结构以及常规和平面结构的倒置结构进行全面比较。之后,我们将重点讨论钙钛矿太阳能电池的倒置平面结构的发展,包括薄膜生长、能带对准、稳定性和滞后。在薄膜生长部分,我们回顾了几种获得高质量钙钛矿薄膜的方法。在界面工程部分,我们讨论了空穴传输层对后续钙钛矿薄膜生长及其界面能带对准的影响,以及电子传输层对电荷传输和界面接触的影响。至于稳定性,我们总结了电荷传输层特别是器件顶部电子传输层在器件稳定性中的作用。在滞后部分,我们提供了倒置平面结构中无滞后的可能原因。在本综述的最后,讨论了钙钛矿太阳能电池商业化面临的剩余挑战的未来发展和可能的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验