Yu Xiao-Dong, Simnacher Timo, Wyderka Nikolai, Nguyen H Chau, Gühne Otfried
Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Siegen, Germany.
Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Nat Commun. 2021 Feb 12;12(1):1012. doi: 10.1038/s41467-020-20799-5.
Clarifying the relation between the whole and its parts is crucial for many problems in science. In quantum mechanics, this question manifests itself in the quantum marginal problem, which asks whether there is a global pure quantum state for some given marginals. This problem arises in many contexts, ranging from quantum chemistry to entanglement theory and quantum error correcting codes. In this paper, we prove a correspondence of the marginal problem to the separability problem. Based on this, we describe a sequence of semidefinite programs which can decide whether some given marginals are compatible with some pure global quantum state. As an application, we prove that the existence of multiparticle absolutely maximally entangled states for a given dimension is equivalent to the separability of an explicitly given two-party quantum state. Finally, we show that the existence of quantum codes with given parameters can also be interpreted as a marginal problem, hence, our complete hierarchy can also be used.
阐明整体与其各部分之间的关系对于科学中的许多问题至关重要。在量子力学中,这个问题在量子边缘问题中表现出来,该问题询问对于某些给定的边缘分布是否存在全局纯量子态。这个问题出现在许多情境中,从量子化学到纠缠理论以及量子纠错码。在本文中,我们证明了边缘问题与可分性问题的对应关系。基于此,我们描述了一系列半定规划,这些半定规划可以判定某些给定的边缘分布是否与某个纯全局量子态兼容。作为一个应用,我们证明了对于给定维度的多粒子绝对最大纠缠态的存在性等同于一个明确给出的两方量子态的可分性。最后,我们表明具有给定参数的量子码的存在性也可以被解释为一个边缘问题,因此,我们完整的层次结构也可以被使用。