Resources for the Future, Washington, DC, USA.
Department of Mathematics, Delft University of Technology, Delft, The Netherlands.
Risk Anal. 2022 Jun;42(6):1294-1305. doi: 10.1111/risa.13695. Epub 2021 Feb 13.
Regular vines (R-vines) copulas build high dimensional joint densities from arbitrary one-dimensional margins and (conditional) bivariate copula densities. Vine densities enable the computation of all conditional distributions, though the calculations can be numerically intensive. Saturated continuous nonparametric Bayes nets (CNPBN) are regular vines. Computing regression functions from the vine copula density is termed vine regression. The epicycles of regression-including/excluding covariates, interactions, higher order terms, multicollinearity, model fit, transformations, heteroscedasticity, bias-are dispelled. One simply computes the regressions from the vine copula density. Only the question of finding an adequate vine copula remains. Vine regression is applied to a data set from the National Longitudinal Study of Youth relating breastfeeding to IQ. The expected effects of breastfeeding on IQ depend on IQ, on the baseline level of breastfeeding, on the duration of additional breastfeeding and on the values of other covariates. A child given two weeks breastfeeding can expect to increase his/her IQ by 1.5-2 IQ points by adding 10 weeks of breastfeeding, depending on values of other covariates. A child given two years breastfeeding can expect to gain from 0.48-0.65 IQ points from 10 additional weeks. Adding 10 weeks breastfeeding to each of the 3,179 children in this data set has a net present value $50,700,000 according to the Bayes net, compared to $29,000,000 according to the linear regression.
常规藤蔓(R-vines)从任意一维边缘和(条件)双变量 Copula 密度构建高维联合密度。藤蔓密度能够计算所有条件分布,尽管计算可能非常密集。饱和连续非参数贝叶斯网络(CNPBN)是常规藤蔓。从藤蔓 Copula 密度计算回归函数称为藤蔓回归。包括/排除协变量、交互作用、高阶项、多重共线性、模型拟合、变换、异方差、偏差的回归周期被消除。人们只需从藤蔓 Copula 密度中计算回归。只剩下找到一个合适的藤蔓 Copula 的问题。藤蔓回归应用于国家青年纵向研究的一个数据集,该数据集将母乳喂养与智商联系起来。母乳喂养对智商的预期影响取决于智商、母乳喂养的基线水平、额外母乳喂养的持续时间以及其他协变量的值。一个接受两周母乳喂养的孩子可以期望通过增加 10 周母乳喂养将其智商提高 1.5-2 个智商点,具体取决于其他协变量的值。一个接受两年母乳喂养的孩子可以期望从 10 周额外母乳喂养中获得 0.48-0.65 个智商点。根据贝叶斯网络,为这个数据集中的 3179 个孩子中的每一个增加 10 周的母乳喂养,其净现值为 5070 万美元,而根据线性回归,其净现值为 2900 万美元。