Department of Mathematics and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
Sci Rep. 2022 Nov 17;12(1):19815. doi: 10.1038/s41598-022-24274-7.
The mixture of the vine copula densities allows selecting the vine structure, the most appropriate type of parametric marginal distributions, and the pair-copulas individually for each cluster. Therefore, complex hidden dependence structures can be fully uncovered and captured by the mixture of vine copula models without restriction to the parametric shape of margins or dependency patterns. However, this flexibility comes with the cost of dramatic increases in the number of model parameters as the dimension increases. Pruning and truncating each cluster of the mixture model will dramatically reduce the number of model parameters. This paper, therefore, introduced the first pruning and truncating techniques for the model-based clustering algorithm using the vine copula model, providing a significant contribution to the state-of-the-art. We apply the proposed methods to a number of well-known data sets with different dimensions. The results show that the performance of the individual pruning and truncation for each model cluster is superior to an existing vine copula clustering model.
藤 copula 密度的混合允许选择藤结构、最合适的参数边缘分布类型以及每个簇的个体对 copula。因此,混合藤 copula 模型可以充分揭示和捕捉复杂的隐藏依赖结构,而不受参数形状或依赖模式的限制。然而,这种灵活性是以模型参数数量随着维度的增加而急剧增加为代价的。修剪和截断混合模型的每个簇将显著减少模型参数的数量。因此,本文引入了基于 vine copula 模型的模型聚类算法的第一个修剪和截断技术,为该领域的最新研究做出了重要贡献。我们将提出的方法应用于许多具有不同维度的著名数据集。结果表明,每个模型簇的个体修剪和截断的性能优于现有的 vine copula 聚类模型。