Ruffel Sandrine, Chaput Valentin, Przybyla-Toscano Jonathan, Fayos Ian, Ibarra Catalina, Moyano Tomas, Fizames Cécile, Tillard Pascal, O'Brien Jose Antonio, Gutiérrez Rodrigo A, Gojon Alain, Lejay Laurence
BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France.
Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
Plant Physiol. 2021 May 27;186(1):696-714. doi: 10.1093/plphys/kiab047.
In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.
在拟南芥(Arabidopsis thaliana)中,根系吸收硝酸盐(NO3-)的高亲和力转运系统(HATS)主要依赖于四种NRT2硝酸盐转运蛋白,即NRT2.1、NRT2.2、NRT2.4和NRT2.5。HATS是许多调控的靶点,用于通过光合作用将氮(N)的获取与植物的氮状态以及碳(C)同化进行协调。在分子水平上,碳和氮信号通路控制NRT2转运蛋白的基因表达。尽管已经鉴定出了几种响应氮或碳信号的这些转运蛋白的调节因子,但NRT2基因表达对这些信号相互作用的响应从未被专门研究过,其潜在的分子机制在很大程度上仍然未知。为了解决这个问题,我们使用了一种原始的系统生物学方法来构建一个响应氮/碳信号靶向NRT2.1、NRT2.2、NRT2.4和NRT2.5的调控基因网络模型。我们对数据的系统分析确定了三种转录因子,即TGA3、MYC1和bHLH093。突变体的功能分析与酵母单杂交实验相结合证实,这三种转录因子都是响应氮或碳信号的NRT2.4或NRT2.5的调节因子。这些结果揭示了TGA3、MYC1和bHLH093在控制根系NRT2转运蛋白基因表达中的作用。