Suppr超能文献

GARP 转录因子通过 ROS 依赖和非依赖途径抑制拟南芥氮饥饿反应。

GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways.

机构信息

BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.

出版信息

J Exp Bot. 2021 May 4;72(10):3881-3901. doi: 10.1093/jxb/erab114.

Abstract

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.

摘要

植物需要应对土壤中氮素供应的剧烈变化。虽然已经发现了许多有关植物如何感知硝酸盐供应的分子机制,但对于植物如何识别氮素缺乏的机制还不太清楚。在去除氮素后,植物会激活其氮饥饿反应(NSR),其特征是激活非常高亲和力的硝酸盐转运系统(NRT2.4 和 NRT2.5)和其他参与氮再利用的哨兵基因,如 GDH3。通过转录因子扰动的功能基因组学和分子生理学研究的结合,我们表明属于 HHO 亚家族的转录因子通过两种潜在的机制成为 NSR 的重要调节剂。首先,HHO 直接抑制高亲和力硝酸盐转运体 NRT2.4 和 NRT2.5。hho 突变体显示出增加的高亲和力硝酸盐转运活性,为生物技术应用开辟了广阔的前景。其次,我们表明活性氧(ROS)对于控制野生型植物中的 NSR 很重要,并且 HRS1 和 HHO1 过表达和突变体在其 ROS 含量方面受到影响,定义了信号通路的潜在前馈分支。总之,我们的结果定义了两种控制 NSR 的分子机制的关系,即 ROS 和 HHO 转录因子。这项工作(i)为一个了解甚少的与营养有关的信号通路开辟了新的前景,(ii)为具有增强硝酸盐吸收能力的植物的分子育种定义了目标。

相似文献

引用本文的文献

本文引用的文献

2
Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition.氮素系统信号:从共生结瘤到根系获取。
Trends Plant Sci. 2021 Apr;26(4):392-406. doi: 10.1016/j.tplants.2020.11.009. Epub 2020 Dec 23.
9
RGF1 controls root meristem size through ROS signalling.RGF1 通过 ROS 信号控制根分生组织大小。
Nature. 2020 Jan;577(7788):85-88. doi: 10.1038/s41586-019-1819-6. Epub 2019 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验