Feng Yuqing, Zhao Yuanyuan, Ma Yanjun, Chen Xiaolong, Shi Hongzhi
College of Tobacco Henan Agricultural University Zhengzhou China.
Technology Center Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd. Beijing China.
Plant Direct. 2024 Oct 20;8(10):e70004. doi: 10.1002/pld3.70004. eCollection 2024 Oct.
Burley tobacco, a chlorophyll-deficient mutant with impaired nitrogen use efficiency (NUE), generally requires three to five times more nitrogen fertilization than flue-cured tobacco to achieve a comparable yield, which generates serious environmental pollution and negatively affects human health. Therefore, exploring the mechanisms underlying NUE is an effective measure to reduce environmental pollution and an essential direction for burley tobacco plant improvement. Physiological and genetic factors affecting tobacco NUE were identified using two tobacco genotypes with contrasting NUE in hydroponic experiments. Nitrogen use inefficient genotype (TN90) had lower nitrogen uptake and transport efficiencies, reduced leaf and root biomass, lower nitrogen assimilation and photosynthesis capacity, and lower nitrogen remobilization ability than the nitrogen use efficient genotype (K326). Transcriptomic analysis revealed that genes associated with photosynthesis, carbon fixation, and nitrogen metabolism are implicated in NUE. Three nitrate transporter genes in the leaves (, , and ) and three nitrate transporter genes (, , and ) in roots were down-regulated by nitrogen starvation, all of which showed lower expression in TN90 than in K326. In addition, the protein-protein interaction (PPI) network diagram identified eight key genes (, , , , , , , and ) that may affect NUE. Less advantageous changes in nitrogen uptake, nitrogen assimilation in combination with nitrogen remobilization, and maintenance of photosynthesis in response to nitrogen deficiency led to a lower NUE in TN90. The key genes (, , , , , , and ) were associated with improving photosynthesis and nitrogen metabolism in tobacco plants grown under N-deficient conditions.
白肋烟是一种氮利用效率(NUE)受损的叶绿素缺乏突变体,通常需要比烤烟多三到五倍的氮肥才能达到可比的产量,这会造成严重的环境污染并对人类健康产生负面影响。因此,探索氮利用效率的潜在机制是减少环境污染的有效措施,也是白肋烟植株改良的重要方向。在水培实验中,使用两种氮利用效率相反的烟草基因型来确定影响烟草氮利用效率的生理和遗传因素。与氮利用高效基因型(K326)相比,氮利用低效基因型(TN90)的氮吸收和运输效率较低,叶和根生物量减少,氮同化和光合作用能力较低,氮再利用能力也较低。转录组分析表明,与光合作用、碳固定和氮代谢相关的基因与氮利用效率有关。叶片中的三个硝酸盐转运蛋白基因(、和)和根中的三个硝酸盐转运蛋白基因(、和)在氮饥饿条件下被下调,所有这些基因在TN90中的表达均低于K326。此外,蛋白质-蛋白质相互作用(PPI)网络图确定了八个可能影响氮利用效率的关键基因(、、、、、、和)。TN90中氮吸收、氮同化与氮再利用以及响应氮缺乏时光合作用维持方面的不利变化导致其氮利用效率较低。这些关键基因(、、、、、、和)与改善缺氮条件下生长的烟草植株的光合作用和氮代谢有关。