Murto Petri, Elmas Sait, Méndez-Romero Ulises A, Yin Yanting, Genene Zewdneh, Mone Mariza, Andersson Gunther G, Andersson Mats R, Wang Ergang
Department of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia.
Macromolecules. 2020 Dec 22;53(24):11106-11119. doi: 10.1021/acs.macromol.0c02212. Epub 2020 Dec 11.
Stable doping of indacenodithieno[3,2-]thiophene (IDTT) structures enables easy color tuning and significant improvement in the charge storage capacity of electrochromic polymers, making use of their full potential as electrochromic supercapacitors and in other emerging hybrid applications. Here, the IDTT structure is copolymerized with four different donor-acceptor-donor (DAD) units, with subtle changes in their electron-donating and electron-withdrawing characters, so as to obtain four different donor-acceptor copolymers. The polymers attain important form factor requirements for electrochromic supercapacitors: desired switching between achromatic black and transparent states (*** 45.9, -3.1, -4.2/86.7, -2.2, and -2.7 for PIDTT-TBT), high optical contrast (72% for PIDTT-TBzT), and excellent electrochemical redox stability (I/I 1.0 for PIDTT-EBE). Poly[indacenodithieno[3,2-]thiophene-2,8-diyl--4,7-bis(2,3-dihydrothieno[3,4-][1,4]dioxin-5-yl)-2-(2-hexyldecyl)-2-benzo[][1,2,3]triazole-7,7'-diyl] (PIDTT-EBzE) stands out as delivering simultaneously a high contrast (69%) and doping level (>100%) and specific capacitance (260 F g). This work introduces IDTT-based polymers as bifunctional electro-optical materials for potential use in color-tailored, color-indicating, and self-regulating smart energy systems.
茚并二噻吩并[3,2 - b]噻吩(IDTT)结构的稳定掺杂能够实现轻松的颜色调节,并显著提高电致变色聚合物的电荷存储容量,从而充分发挥其作为电致变色超级电容器以及在其他新兴混合应用中的潜力。在此,IDTT结构与四种不同的给体 - 受体 - 给体(DAD)单元进行共聚,这些单元在其供电子和吸电子特性上有细微变化,从而获得四种不同的给体 - 受体共聚物。这些聚合物满足了电致变色超级电容器的重要形态因素要求:在消色差黑色和透明状态之间实现所需的切换(对于PIDTT - TBT分别为*** 45.9, - 3.1, - 4.2/86.7, - 2.2和 - 2.7),高光学对比度(对于PIDTT - TBzT为72%),以及出色的电化学氧化还原稳定性(对于PIDTT - EBE,I/I 1.0)。聚[茚并二噻吩并[3,2 - b]噻吩 - 2,8 - 二基 - 4,7 - 双(2,3 - 二氢噻吩并[3,4 - b][1,4]二恶英 - 5 - 基) - 2 - (2 - 己基癸基) - 2 - 苯并[c][1,2,3]三唑 - 7,7' - 二基](PIDTT - EBzE)脱颖而出,同时具有高对比度(69%)、掺杂水平(>100%)和比电容(260 F g)。这项工作引入了基于IDTT的聚合物作为双功能电光材料,有望用于颜色定制、颜色指示和自我调节的智能能源系统。