Suppr超能文献

为何纯净的聚(3,4-乙撑二氧噻吩)会被氧化至33%?氧化聚合机理的密度泛函理论研究。

Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism.

作者信息

Kim Donghyun, Zozoulenko Igor

机构信息

Laboratory of Organic Electronics Department of Science and Technology , Linköping University , 60174 Norrköping , Sweden.

出版信息

J Phys Chem B. 2019 Jun 20;123(24):5160-5167. doi: 10.1021/acs.jpcb.9b01745. Epub 2019 Jun 5.

Abstract

Currently, a theoretical understanding of thermodynamics and kinetics of the oxidative polymerization of poly(3,4-ethylenedioxythiophene) (best known as PEDOT) is missing. In the present study, step-by-step density functional theory calculations of the radical polymerization of PEDOT with tosylate counterions (PEDOT:TOS) using Fe(TOS) as oxidant and dopant are performed. We calculate the Gibbs free energy for the conventional mechanism that consists of the polymerization of neutral PEDOT oligomers first, followed by their oxidation (doping). We also propose an alternative mechanism of polymerization, in which the already oxidized oligomers are used as reactants, leading to doped (oxidized) oligomers as products during polymerization. Our calculations indicate that the alternative mechanism is more efficient for longer PEDOT oligomers (chain length N > 6). We find that the oxidation of the EDOT monomer is the rate-limiting step for both mechanisms. Another focus of our study is the understanding of the maximum oxidation level that can be achieved during polymerization. Our calculations provide a theoretical explanation of "the magic number" of 33% for the oxidation level typically reported for the pristine (i.e., as-polymerized) materials and relate it to the change of the character of the bonds in the oligomers (aromatic to quinoid) that occurs at this oxidation level.

摘要

目前,对于聚(3,4-乙撑二氧噻吩)(最知名的是PEDOT)氧化聚合的热力学和动力学缺乏理论认识。在本研究中,使用Fe(TOS)作为氧化剂和掺杂剂,对带有甲苯磺酸根抗衡离子的PEDOT(PEDOT:TOS)的自由基聚合进行了逐步密度泛函理论计算。我们计算了传统机理的吉布斯自由能,该机理首先由中性PEDOT低聚物聚合,然后进行氧化(掺杂)。我们还提出了一种替代的聚合机理,其中已氧化的低聚物用作反应物,在聚合过程中生成掺杂(氧化)低聚物作为产物。我们的计算表明,对于较长的PEDOT低聚物(链长N>6),替代机理更有效。我们发现EDOT单体的氧化是两种机理的速率限制步骤。我们研究的另一个重点是理解聚合过程中可达到的最大氧化水平。我们的计算为原始(即刚聚合的)材料通常报道的33%氧化水平的“神奇数字”提供了理论解释,并将其与该氧化水平下低聚物中键的性质变化(从芳香族到醌型)联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验