Suppr超能文献

图定向之间的翻转距离。

Flip Distances Between Graph Orientations.

作者信息

Aichholzer Oswin, Cardinal Jean, Huynh Tony, Knauer Kolja, Mütze Torsten, Steiner Raphael, Vogtenhuber Birgit

机构信息

TU Graz, Graz, Austria.

Université Libre de Bruxelles (ULB), Brussels, Belgium.

出版信息

Algorithmica. 2021;83(1):116-143. doi: 10.1007/s00453-020-00751-1. Epub 2020 Jul 27.

Abstract

Flip graphs are a ubiquitous class of graphs, which encode relations on a set of combinatorial objects by elementary, local changes. Skeletons of associahedra, for instance, are the graphs induced by quadrilateral flips in triangulations of a convex polygon. For some definition of a flip graph, a natural computational problem to consider is the flip distance: Given two objects, what is the minimum number of flips needed to transform one into the other? We consider flip graphs on orientations of simple graphs, where flips consist of reversing the direction of some edges. More precisely, we consider so-called -orientations of a graph , in which every vertex has a specified outdegree , and a flip consists of reversing all edges of a directed cycle. We prove that deciding whether the flip distance between two -orientations of a planar graph is at most two is NP-complete. This also holds in the special case of perfect matchings, where flips involve alternating cycles. This problem amounts to finding geodesics on the common base polytope of two partition matroids, or, alternatively, on an alcoved polytope. It therefore provides an interesting example of a flip distance question that is computationally intractable despite having a natural interpretation as a geodesic on a nicely structured combinatorial polytope. We also consider the dual question of the flip distance between graph orientations in which every cycle has a specified number of forward edges, and a flip is the reversal of all edges in a minimal directed cut. In general, the problem remains hard. However, if we restrict to flips that only change sinks into sources, or vice-versa, then the problem can be solved in polynomial time. Here we exploit the fact that the flip graph is the cover graph of a distributive lattice. This generalizes a recent result from Zhang et al. (Acta Math Sin Engl Ser 35(4):569-576, 2019).

摘要

翻转图是一类普遍存在的图,它通过基本的局部变化来编码一组组合对象上的关系。例如,关联多面体的骨架是凸多边形三角剖分中四边形翻转所诱导的图。对于翻转图的某些定义,一个自然要考虑的计算问题是翻转距离:给定两个对象,将一个对象变换为另一个对象所需的最少翻转次数是多少?我们考虑简单图定向的翻转图,其中翻转包括反转某些边的方向。更确切地说,我们考虑图(G)的所谓(k -)定向,其中每个顶点(v)都有指定的出度(k),并且一次翻转包括反转有向环的所有边。我们证明,判定平面图(G)的两个(k -)定向之间的翻转距离是否至多为(2)是(NP -)完全的。在完美匹配的特殊情况下也是如此,其中翻转涉及交错环。这个问题相当于在两个划分拟阵的公共基多胞体上,或者在一个带壁多胞体上找到测地线。因此,它提供了一个有趣的翻转距离问题的例子,尽管它可以自然地解释为在结构良好的组合多胞体上的测地线,但在计算上却是难以处理的。我们还考虑了图定向之间翻转距离的对偶问题,其中每个环都有指定数量的向前边,并且一次翻转是最小有向割中所有边的反转。一般来说,这个问题仍然很难解决,但如果我们将翻转限制为仅将汇点变为源点,反之亦然,那么这个问题可以在多项式时间内解决。在这里,我们利用翻转图是分配格的覆盖图这一事实。这推广了张等人(《数学学报(英文版)》35(4):569 - 576, 2019)最近的一个结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53de/7846516/c0e2fa21f84d/453_2020_751_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验