Suppr超能文献

与其他算法相比,使用全卷积网络的一次性多路径规划

One-Shot Multi-Path Planning Using Fully Convolutional Networks in a Comparison to Other Algorithms.

作者信息

Kulvicius Tomas, Herzog Sebastian, Lüddecke Timo, Tamosiunaite Minija, Wörgötter Florentin

机构信息

Third Institute of Physics - Biophysics, Department for Computational Neuroscience, University of Göttingen, Göttingen, Germany.

Faculty of Computer Science, Vytautas Mangnus University, Kaunas, Lithuania.

出版信息

Front Neurorobot. 2021 Jan 8;14:600984. doi: 10.3389/fnbot.2020.600984. eCollection 2020.

Abstract

Path planning plays a crucial role in many applications in robotics for example for planning an arm movement or for navigation. Most of the existing approaches to solve this problem are iterative, where a path is generated by prediction of the next state from the current state. Moreover, in case of multi-agent systems, paths are usually planned for each agent separately (decentralized approach). In case of centralized approaches, paths are computed for each agent simultaneously by solving a complex optimization problem, which does not scale well when the number of agents increases. In contrast to this, we propose a novel method, using a homogeneous, convolutional neural network, which allows generation of complete paths, even for more than one agent, in one-shot, i.e., with a single prediction step. First we consider single path planning in 2D and 3D mazes. Here, we show that our method is able to successfully generate optimal or close to optimal (in most of the cases <10% longer) paths in more than 99.5% of the cases. Next we analyze multi-paths either from a single source to multiple end-points or vice versa. Although the model has never been trained on multiple paths, it is also able to generate optimal or near-optimal (<22% longer) paths in 96.4 and 83.9% of the cases when generating two and three paths, respectively. Performance is then also compared to several state of the art algorithms.

摘要

路径规划在机器人技术的许多应用中起着至关重要的作用,例如用于规划手臂运动或导航。现有的解决此问题的大多数方法都是迭代的,即通过从当前状态预测下一个状态来生成路径。此外,在多智能体系统的情况下,路径通常是为每个智能体单独规划的(分散式方法)。在集中式方法中,通过解决一个复杂的优化问题来同时为每个智能体计算路径,当智能体数量增加时,这种方法的扩展性不佳。与此相反,我们提出了一种新颖的方法,使用均匀的卷积神经网络,即使对于多个智能体,也能在一次预测步骤中一次性生成完整路径。首先,我们考虑二维和三维迷宫中的单路径规划。在此,我们表明我们的方法在超过99.5%的情况下能够成功生成最优或接近最优(在大多数情况下长不到10%)的路径。接下来,我们分析从单个源点到多个终点或反之亦然的多路径。尽管该模型从未在多路径上进行过训练,但在生成两条和三条路径时,分别在96.4%和83.9%的情况下也能够生成最优或接近最优(长不到22%)的路径。然后还将性能与几种现有最佳算法进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267f/7874085/07d9c93f7c6b/fnbot-14-600984-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验