De Santi Alessandra, Monti Susanna, Barcaro Giovanni, Zhang Zhenlei, Barta Katalin, Deuss Peter J
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
ACS Sustain Chem Eng. 2021 Feb 8;9(5):2388-2399. doi: 10.1021/acssuschemeng.0c08901. Epub 2021 Jan 25.
Acidolysis in conjunction with stabilization of reactive intermediates has emerged as one of the most powerful methods of lignin depolymerization that leads to high aromatic monomer yields. In particular, stabilization of reactive aldehydes using ethylene glycol results in the selective formation of the corresponding cyclic acetals (1,3-dioxolane derivatives) from model compounds, lignin, and even from softwood lignocellulose. Given the high practical utility of this method for future biorefineries, a deeper understanding of the method is desired. Here, we aim to elucidate key mechanistic questions utilizing a combination of experimental and multilevel computational approaches. The multiscale computational protocol used, based on ReaxFF molecular dynamics, represents a realistic scenario, where a typical experimental setup can be reproduced confidently given the explicit molecules of the solute, catalyst, and reagent. The nudged elastic band (NEB) approach allowed us to characterize the key intermolecular interactions involved in the reaction paths leading to crucial intermediates and products. The high level of detail obtained clearly revealed for the first time the unique role of sulfuric acid as a proton donor and acceptor in lignin β-O-4 acidolysis as well as the reaction pathways for ethylene glycol stabilization, and the difference in reactivity between compounds with different methoxy substituents.
酸解结合反应中间体的稳定化已成为木质素解聚最有效的方法之一,可实现高芳烃单体产率。特别是,使用乙二醇稳定反应性醛可从模型化合物、木质素甚至软木木质纤维素中选择性地形成相应的环状缩醛(1,3 - 二氧戊环衍生物)。鉴于该方法对未来生物精炼厂具有很高的实际应用价值,需要对其有更深入的了解。在此,我们旨在结合实验和多级计算方法来阐明关键的机理问题。所使用的基于ReaxFF分子动力学的多尺度计算协议代表了一种真实的场景,在这种场景下,考虑到溶质、催化剂和试剂的明确分子,可以可靠地重现典型的实验装置。推挤弹性带(NEB)方法使我们能够表征导致关键中间体和产物的反应路径中涉及的关键分子间相互作用。所获得的高度详细信息首次清楚地揭示了硫酸在木质素β - O - 4酸解中作为质子供体和受体的独特作用以及乙二醇稳定化的反应途径,以及不同甲氧基取代基化合物之间的反应活性差异。