Suppr超能文献

多组学驱动的木质纤维素碳利用代谢网络重建与分析

Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in .

作者信息

Kim Joonhoon, Coradetti Samuel T, Kim Young-Mo, Gao Yuqian, Yaegashi Junko, Zucker Jeremy D, Munoz Nathalie, Zink Erika M, Burnum-Johnson Kristin E, Baker Scott E, Simmons Blake A, Skerker Jeffrey M, Gladden John M, Magnuson Jon K

机构信息

Department of Energy, Agile BioFoundry, Emeryville, CA, United States.

Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.

出版信息

Front Bioeng Biotechnol. 2021 Jan 8;8:612832. doi: 10.3389/fbioe.2020.612832. eCollection 2020.

Abstract

An oleaginous yeast is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in and reconstructed the genome-scale metabolic network of . High-quality metabolic network models for model organisms and orthologous protein mapping were used to build a draft metabolic network reconstruction. The reconstruction was manually curated to build a metabolic model using functional annotation and multi-omics data including transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-omics data and metabolic model were used to investigate metabolism including lipid accumulation and lignocellulosic carbon utilization. The developed metabolic model was validated against high-throughput growth phenotyping and gene fitness data, and further refined to resolve the inconsistencies between prediction and data. We believe that this is the most complete and accurate metabolic network model available for to date.

摘要

油质酵母是将木质纤维素生物质转化为生物产品和生物燃料的一种很有前景的宿主。在这项工作中,我们对[具体酵母名称]中木质纤维素碳的利用进行了多组学分析,并重建了[具体酵母名称]的基因组规模代谢网络。利用针对模式生物的高质量代谢网络模型和直系同源蛋白质图谱构建了代谢网络重建草图。通过功能注释以及包括转录组学、蛋白质组学、代谢组学和RB-TDNA测序在内的多组学数据,对该重建进行人工整理以构建代谢模型。多组学数据和代谢模型被用于研究[具体酵母名称]的代谢,包括脂质积累和木质纤维素碳的利用。所开发的代谢模型根据高通量生长表型分析和基因适应性数据进行了验证,并进一步优化以解决预测与数据之间的不一致问题。我们认为,这是迄今为止可用于[具体酵母名称]的最完整、最准确的代谢网络模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d672/7873862/7d817091df67/fbioe-08-612832-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验