Abesser Corinna, Schincariol Robert A, Raymond Jasmin, García-Gil Alejandro, Drysdale Ronan, Piatek Alex, Giordano Nicolò, Jaziri Nehed, Molson John
Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
Institut National de la Recherche Scientifique, 490 Couronne Street, Quebec City, QC, G1K 9A9, Canada.
Ground Water. 2023 Mar;61(2):255-273. doi: 10.1111/gwat.13086. Epub 2021 Mar 18.
Global demands for energy-efficient heating and cooling systems coupled with rising commitments toward net zero emissions is resulting in wide deployment of shallow geothermal systems, typically installed to a depth of 100 to 200 m, and in the continued growth of the global ground source heat pump (GSHP) market. Ground coupled heat pump (GCHP) systems take up to 85% of the global GSHP market. With increasing deployment of GCHP systems in urban areas coping with limited regulations, there is growing potential and risk for these systems to impact the subsurface thermal regime and to interact with each other or with nearby heat-sensitive subsurface infrastructure. In this paper, we present three numerical modeling case studies, from the UK and Canada, which examine GCHP systems' response to perturbation of the wider hydrogeological and thermal regimes. The studies demonstrate how GCHP systems can be impacted by external influences and perturbations arising from subsurface activities that change the thermal and hydraulic regimes in the area surrounding these systems. Additional subsurface heat loads near existing schemes are found to have varied impacts on system efficiency with reduction ranging from <1% to 8%, while changes in groundwater flow rates (due to a nearby groundwater abstraction) reduced the effective thermal conductivity at the study site by 13%. The findings support the argument in favor of regulation of GCHP systems or, to a minimum, their registration with records of locations and approximate heat pump capacity-even though these systems do not abstract/inject groundwater.
全球对节能供热和制冷系统的需求不断增加,同时对净零排放的承诺也在不断提高,这导致浅层地热系统得到广泛应用,这类系统通常安装深度为100至200米,全球地源热泵(GSHP)市场也在持续增长。地耦合热泵(GCHP)系统占据了全球GSHP市场的85%。随着GCHP系统在城市地区的部署不断增加,而相关法规有限,这些系统影响地下热状态以及相互之间或与附近对热敏感的地下基础设施相互作用的可能性和风险也在增加。在本文中,我们展示了来自英国和加拿大的三个数值模拟案例研究,这些研究考察了GCHP系统对更广泛的水文地质和热状态扰动的响应。研究表明,GCHP系统如何受到地下活动产生的外部影响和扰动的影响,这些活动会改变这些系统周围区域的热状态和水力状态。发现现有方案附近的额外地下热负荷对系统效率有不同影响,降低幅度从<1%到8%不等,而地下水流速的变化(由于附近的地下水抽取)使研究地点的有效热导率降低了13%。这些发现支持了对GCHP系统进行监管的观点,或者至少要求其登记位置和近似热泵容量记录——尽管这些系统不抽取/注入地下水。