Suppr超能文献

非连续分子动力学模拟生物分子界面行为:Ovispirin-1 在石墨烯表面吸附的研究。

Discontinuous Molecular Dynamics Simulations of Biomolecule Interfacial Behavior: Study of Ovispirin-1 Adsorption on a Graphene Surface.

机构信息

College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China.

Chemical Engineering Department, Howard University, Washington, D.C. 20059, United States.

出版信息

J Chem Theory Comput. 2021 Mar 9;17(3):1874-1882. doi: 10.1021/acs.jctc.0c01172. Epub 2021 Feb 15.

Abstract

Fundamental understanding of biomolecular interfacial behavior, such as protein adsorption at the microscopic scale, is critical to broad applications in biomaterials, nanomedicine, and nanoparticle-based biosensing techniques. The goal of achieving both computational efficiency and accuracy presents a major challenge for simulation studies at both atomistic and molecular scales. In this work, we developed a unique, accurate, high-throughput simulation method which, by integrating discontinuous molecular dynamics (DMD) simulations with the Go-like protein-surface interaction model, not only solves the dynamics efficiently, but also describes precisely the protein intramolecular and intermolecular interactions at the atomistic scale and the protein-surface interactions at the coarse-grained scale. Using our simulation method and in-house developed software, we performed a systematic study of α-helical ovispirin-1 peptide adsorption on a graphene surface, and our study focused on the effect of surface hydrophobic interactions and π-π stacking on protein adsorption. Our DMD simulations were consistent with full-atom molecular dynamics simulations and showed that a single ovispirin-1 peptide lay down on the flat graphene surface with randomized secondary structure due to strong protein-surface interactions. Peptide aggregates were formed with an internal hydrophobic core driven by strong interactions of hydrophobic residues in the bulk environment. However, upon adsorption, the hydrophobic graphene surface can break the hydrophobic core by denaturing individual peptide structures, leading to disassembling the aggregate structure and further randomizing the ovispirin-1 peptide's secondary structures.

摘要

生物分子界面行为的基本理解,如微观尺度上的蛋白质吸附,对于生物材料、纳米医学和基于纳米粒子的生物传感技术的广泛应用至关重要。在原子和分子尺度上的模拟研究中,实现计算效率和准确性的目标提出了一个重大挑战。在这项工作中,我们开发了一种独特的、准确的、高通量的模拟方法,该方法通过将不连续分子动力学(DMD)模拟与 Go 样蛋白-表面相互作用模型相结合,不仅有效地解决了动力学问题,而且还精确地描述了原子尺度上的蛋白质分子内和分子间相互作用以及粗粒化尺度上的蛋白质-表面相互作用。使用我们的模拟方法和内部开发的软件,我们对α-螺旋ovisprin-1 肽在石墨烯表面上的吸附进行了系统研究,我们的研究重点是表面疏水性相互作用和π-π堆积对蛋白质吸附的影响。我们的 DMD 模拟与全原子分子动力学模拟一致,表明由于强烈的蛋白质-表面相互作用,单个 ovisprin-1 肽会在平坦的石墨烯表面上展开,其二级结构随机化。肽聚集体由于疏水性残基在本体环境中的强相互作用而形成一个内部疏水性核心。然而,在吸附过程中,疏水性石墨烯表面可以通过使单个肽结构变性来破坏疏水性核心,从而导致聚集体结构解体,并进一步使 ovisprin-1 肽的二级结构随机化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验