Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Japan.
Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
Elife. 2021 Feb 15;10:e61358. doi: 10.7554/eLife.61358.
Integrity of rhythmic spatial gene expression patterns in the vertebrate segmentation clock requires local synchronization between neighboring cells by Delta-Notch signaling and its inhibition causes defective segment boundaries. Whether deformation of the oscillating tissue complements local synchronization during patterning and segment formation is not understood. We combine theory and experiment to investigate this question in the zebrafish segmentation clock. We remove a Notch inhibitor, allowing resynchronization, and analyze embryonic segment recovery. We observe unexpected intermingling of normal and defective segments, and capture this with a new model combining coupled oscillators and tissue mechanics. Intermingled segments are explained in the theory by advection of persistent phase vortices of oscillators. Experimentally observed changes in recovery patterns are predicted in the theory by temporal changes in tissue length and cell advection pattern. Thus, segmental pattern recovery occurs at two length and time scales: rapid local synchronization between neighboring cells, and the slower transport of the resulting patterns across the tissue through morphogenesis.
脊椎动物分节时钟中节律性空间基因表达模式的完整性需要通过 Delta-Notch 信号在相邻细胞之间进行局部同步,其抑制会导致节段边界缺陷。在模式形成和节段形成过程中,振荡组织的变形是否补充了局部同步尚不清楚。我们结合理论和实验来研究斑马鱼分节时钟中的这个问题。我们去除 Notch 抑制剂,允许重新同步,并分析胚胎节段的恢复情况。我们观察到正常和缺陷节段的意外混合,并通过结合耦合振荡器和组织力学的新模型来捕捉这一现象。理论上,通过振荡器的持久相位涡旋的平流来解释混合节段。通过组织长度和细胞平流模式的时间变化,理论上可以预测实验中观察到的恢复模式的变化。因此,节段模式的恢复发生在两个长度和时间尺度上:相邻细胞之间的快速局部同步,以及通过形态发生将产生的模式在组织中较慢地传输。