Xue Zhongmeng, Li Tao, Sun He, Tang Qiwei, Yu Yang, Zhu Kunlei
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu ,Shandong 273165, P. R. China.
School of Energy and Mechanical Engineering, Dezhou University, No. 566 West University Road, Dezhou 253023, China.
ACS Omega. 2025 Apr 11;10(15):15744-15752. doi: 10.1021/acsomega.5c01447. eCollection 2025 Apr 22.
Developing high-performance anode materials is crucial for advancing lithium-ion batteries, particularly to meet the growing demands for higher capacity, improved safety, and enhanced rate performance in applications such as electric vehicles. In this study, we reveal the significant impact of the TiO particle size on the synthesis and electrochemical performance of titanium-niobium oxides (TNOs). Using a high-temperature solid-phase method, we synthesized TNOs with varying compositions and sizes by reacting TiO particles of different sizes (5-10, 10-25, 30, 60, and 100 nm) with NbO particles. Comprehensive characterization through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electrochemical tests revealed that the TNO synthesized using 10-25 nm TiO particles (designated as TNO4) exhibited superior electrochemical performance. TNO4 demonstrated the highest charge/discharge capacities at high current densities and exceptional cycling stability, which can be attributed to its optimal composition and particle size, both of which facilitate efficient lithium-ion diffusion and electron transport. This work not only highlights the critical role of precursor particle size in tailoring the properties of TNO anode materials but also identifies the optimal TiO particle size for synthesizing high-performance TNOs via a simple and scalable method. Additionally, this work underscores that both the composition and the particle size of TNOs significantly affect their electrochemical performance. Our findings provide valuable insights and serve as a practical reference for the design and preparation of advanced anode materials for lithium-ion batteries.
开发高性能负极材料对于推进锂离子电池至关重要,特别是为了满足电动汽车等应用中对更高容量、更高安全性和更优倍率性能日益增长的需求。在本研究中,我们揭示了TiO粒径对钛铌氧化物(TNOs)的合成及电化学性能的显著影响。采用高温固相法,通过使不同尺寸(5 - 10、10 - 25、30、60和100 nm)的TiO颗粒与NbO颗粒反应,合成了具有不同组成和尺寸的TNOs。通过X射线衍射、扫描电子显微镜、透射电子显微镜和电化学测试进行的综合表征表明,使用10 - 25 nm TiO颗粒合成的TNO(命名为TNO4)表现出优异的电化学性能。TNO4在高电流密度下展现出最高的充/放电容量和出色的循环稳定性,这可归因于其最佳的组成和粒径,二者均有助于高效的锂离子扩散和电子传输。这项工作不仅突出了前驱体粒径在定制TNO负极材料性能方面的关键作用,还通过一种简单且可扩展的方法确定了合成高性能TNOs的最佳TiO粒径。此外,这项工作强调了TNOs的组成和粒径均对其电化学性能有显著影响。我们的研究结果提供了有价值的见解,并为锂离子电池先进负极材料的设计和制备提供了实用参考。